0基础学习PyTorch
文章平均质量分 84
breaksoftware
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
0基础学习PyTorch——监控机器学习的可视化工具
TensorBoard 是一个用于可视化和监控机器学习实验的工具。它是 TensorFlow 的一个组件,但也可以与 PyTorch 等其他深度学习框架一起使用。原创 2024-10-01 00:30:00 · 1409 阅读 · 0 评论 -
0基础学习PyTorch——GPU上训练和推理
依据系统是否支持cuda来生成设备。模型和数据都要移动到相同的设备上。模型是由CPU还是GPU训练的,并不影响推理使用CPU还是GPU。原创 2024-09-28 00:15:00 · 1211 阅读 · 0 评论 -
0基础学习PyTorch——时尚分类(Fashion MNIST)训练和推理
将下面内容保存为garmentclassifier.py。该文件会被训练和推理两个环节使用。# 定义一个用于服装分类的卷积神经网络# 定义第一个卷积层,输入通道数为1,输出通道数为6,卷积核大小为5x5# 定义最大池化层,池化窗口大小为2x2# 定义第二个卷积层,输入通道数为6,输出通道数为16,卷积核大小为5x5# 定义第一个全连接层,输入大小为16*4*4,输出大小为120# 定义第二个全连接层,输入大小为120,输出大小为84。原创 2024-09-26 00:15:00 · 2358 阅读 · 0 评论 -
0基础学习PyTorch——最小Demo
定义神经网络是深度学习模型开发的核心步骤之一。一个良好定义的神经网络可以有效地学习和泛化数据,从而在各种任务中取得优异的表现。本文不过度讨论神经网络,只是抛砖引玉,让大家知道结构长什么样子。# 定义一个简单的神经网络self.linear = nn.Linear(1, 1) # 输入和输出都是1维# 实例化模型、损失函数和优化器criterion = nn.MSELoss() # 均方误差损失。原创 2024-09-23 00:15:00 · 2768 阅读 · 0 评论
分享