frank 的专栏

人类的一切智慧是包含在这四个字里面的:”等待“ 和 ”希望“。—— 《基督山伯爵》...

【Tensorflow】 写给初学者的深度学习教程之 MNIST 数字识别

一般而言,MNIST 数据集测试就是机器学习和深度学习当中的"Hello World"工程,几乎是所有的教程都会把它放在最开始的地方.这是因为,这个简单的工程包含了大致的机器学习流程,通过练习这个工程有助于读者加深理解机器学习或者是深度学习的大致流程. 可恰恰就是在这个地方,却容易给初学者带来困...

2018-05-24 19:54:10

阅读数:3776

评论数:7

【深度学习】轻量级神经网络 SqueezeNet 讲解

在深度学习领域,人们一般把注意力集中在如何提高神经网络的准确度上,所以,神经网络的层次越来越深,参数也越来越多,但带来的问题就是神经网络对于硬件的要求越来越高,但在嵌入式硬件上比如手机、自动驾驶的计算平台,这将很吃力,所以,有一些人会将精力放在如何精简和优化网络模型上,以便它们能够比较顺利运行在硬...

2018-12-13 21:44:04

阅读数:178

评论数:1

【深度学习】目标检测算法 YOLO 最耐心细致的讲解

YOLO 是 2016 年提出来的目标检测算法,在当时比较优秀的目标检测算法有 R-CNN、Fast R-CNN 等等,但 YOLO 算法还是让人感到很新奇与兴奋。 YOLO 是 You only look once 几个单词的缩写,大意是你看一次就可以预测了,灵感就来自于我们人类自己,因为人看一...

2018-12-04 20:43:50

阅读数:247

评论数:0

用 PyTorch 从零创建 CIFAR-10 的图像分类器神经网络,并将测试准确率达到 85%

一般,深度学习的教材或者是视频,作者都会通过 MNIST 这个数据集,讲解深度学习的效果,但这个数据集太小了,而且是单色图片,随便弄些模型就可以取得比较好的结果,但如果我们不满足于此,想要训练一个神经网络来对彩色图像进行分类,可以不可以呢? 当然可以的,但是没有想象的容易。 我最开始亲自设置神...

2018-11-21 16:47:38

阅读数:288

评论数:0

【深度学习】Batch Normalizaton 的作用及理论基础详解

对于 Batch Normalization 的知识最原始的出处来源于《Batch Normalization:Accelerating Deep Network Trainning by Reducing Internal Covariate Shift》这篇论文。 文章开始前,先讲一下 Bat...

2018-11-18 16:11:48

阅读数:115

评论数:0

【深度学习】经典神经网络 VGG 论文解读

VGG 在深度学习领域中非常有名,很多人 fine-tune 的时候都是下载 VGG 的预训练过的权重模型,然后在次基础上进行迁移学习。VGG 是 ImageNet 2014 年目标定位竞赛的第一名,图像分类竞赛的第二名,需要注意的是,图像分类竞赛的第一名是大名鼎鼎的 GoogLeNet,那么为什...

2018-11-06 18:56:08

阅读数:202

评论数:0

【深度学习】经典神经网络 ResNet 论文解读

ResNet 是何凯明团队的作品,对应的论文 《Deep Residual Learning for Image Recognition》是 2016 CVPR 最佳论文。ResNet 的 Res 也是 Residual 的缩写,它的用意在于基于残差学习,让神经网络能够越来越深,准确率越来越高。 ...

2018-10-30 18:55:43

阅读数:177

评论数:0

【Tensorflow】数据及模型的保存和恢复

如果你是一个深度学习的初学者,那么我相信你应该会跟着教材或者视频敲上那么一遍代码,搭建最简单的神经网络去完成针对 MNIST 数据库的数字识别任务。通常,随意构建 3 层神经网络就可以很快地完成任务,得到比较高的准确率。这时候,你信心大增,准备挑战更难的任务。 你准备进行针对彩色图片做类型识别,那...

2018-10-23 22:56:41

阅读数:402

评论数:2

【深度学习】CNN 中 1x1 卷积核的作用

最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核是 3x3 ,那么,1x1 的卷积核有什么意义呢? 最初应用 1x1 卷积核的神经网络是 Network In...

2018-10-19 18:12:18

阅读数:158

评论数:0

【深度学习】多通道图像卷积过程及计算方式

之前,有写了一篇博文,【深度学习入门】——亲手实现图像卷积操作介绍卷积的相应知识,但那篇文章更多的是以滤波器的角度去讲解卷积。但实际上是神经网络中该博文内容并不适应。 之前的文章为了便于演示,针对的是二维卷积,比如一张图片有 RGB 三个颜色通道,我的方式是每个通道单独卷积,然后将各个通道合成一张...

2018-10-15 21:42:50

阅读数:941

评论数:4

【深度学习】R-CNN 论文解读及个人理解

背景 本篇论文的题目是 《Rich feature hierarchies for accurate oject detection and semantic segmentation》,翻译过来就是针对高准确度的目标检测与语义分割的多特征层级,通俗地来讲就是一个用来做目标检测和语义分割的神...

2018-08-24 10:04:15

阅读数:1312

评论数:0

【Tensorflow】Dataset 中的 Iterator

Tensorflow 现在将 Dataset 作为首选的数据读取手段,而 Iterator 是 Dataset 中最重要的概念。这篇文章的目的是,以官网文档为基础,较详细的介绍 Iterator 的用法。 Dataset 和 Iterator 的关系 在文章开始之前,首先得对 Dataset ...

2018-07-09 10:59:33

阅读数:1699

评论数:1

【Tensorflow】你可能无法回避的 TFRecord 文件格式详细讲解

如果你是 Tensorflow 的初学者,那么你或多或少在网络上别人的博客上见到过 TFRecord 的影子,但很多作者都没有很仔细地对它进行说明,这也许会让你感受到了苦恼。本文按照我自己的思路对此进行一番讲解,也许能够提供给你一些帮助。 TFRecord 是什么? TFRecord 是谷歌推...

2018-06-25 15:38:23

阅读数:1296

评论数:3

【深度学习入门】——亲手实现图像卷积操作

深度学习中有一个很重要的概念就是卷积神经网络 CNN,卷积神经网络中又有卷积层、池化层的概念。尤其是卷积层,理解难度比较大,虽然书中或者是视频中都有详细介绍过它的基础概念,但对于求知欲望很强烈的我,我总心里痒痒的,总想亲手实现,看看效果,怕的就是自己会眼高手低,做技术人最可怕的就是眼高手低。所以,...

2018-03-22 16:46:22

阅读数:2211

评论数:4

提示
确定要删除当前文章?
取消 删除