frank 的专栏

人类的一切智慧是包含在这四个字里面的:”等待“ 和 ”希望“。—— 《基督山伯爵》...

【深度学习】多通道图像卷积过程及计算方式

之前,有写了一篇博文,【深度学习入门】——亲手实现图像卷积操作介绍卷积的相应知识,但那篇文章更多的是以滤波器的角度去讲解卷积。但实际上是神经网络中该博文内容并不适应。 之前的文章为了便于演示,针对的是二维卷积,比如一张图片有 RGB 三个颜色通道,我的方式是每个通道单独卷积,然后将各个通道合成一张...

2018-10-15 21:42:50

阅读数:59

评论数:0

【深度学习】R-CNN 论文解读及个人理解

背景 本篇论文的题目是 《Rich feature hierarchies for accurate oject detection and semantic segmentation》,翻译过来就是针对高准确度的目标检测与语义分割的多特征层级,通俗地来讲就是一个用来做目标检测和语义分割的神经网...

2018-08-24 10:04:15

阅读数:191

评论数:0

【Tensorflow】 写给初学者的深度学习教程之 MNIST 数字识别

一般而言,MNIST 数据集测试就是机器学习和深度学习当中的"Hello World"工程,几乎是所有的教程都会把它放在最开始的地方.这是因为,这个简单的工程包含了大致的机器学习流程,通过练习这个工程有助于读者加深理解机器学习或者是深度学习的大致流程. 可恰恰就是在这个地方,却容易给初学者带来困...

2018-05-24 19:54:10

阅读数:3054

评论数:5

【深度学习】CNN 中 1x1 卷积核的作用

最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核是 3x3 ,那么,1x1 的卷积核有什么意义呢? 最初应用 1x1 卷积核的神经网络是 Network In...

2018-10-19 18:12:18

阅读数:26

评论数:0

【Tensorflow】Dataset 中的 Iterator

Tensorflow 现在将 Dataset 作为首选的数据读取手段,而 Iterator 是 Dataset 中最重要的概念。这篇文章的目的是,以官网文档为基础,较详细的介绍 Iterator 的用法。 Dataset 和 Iterator 的关系 在文章开始之前,首先得对 Dataset ...

2018-07-09 10:59:33

阅读数:595

评论数:1

【Tensorflow】你可能无法回避的 TFRecord 文件格式详细讲解

如果你是 Tensorflow 的初学者,那么你或多或少在网络上别人的博客上见到过 TFRecord 的影子,但很多作者都没有很仔细地对它进行说明,这也许会让你感受到了苦恼。本文按照我自己的思路对此进行一番讲解,也许能够提供给你一些帮助。 TFRecord 是什么? TFRecord 是谷歌推...

2018-06-25 15:38:23

阅读数:403

评论数:1

【深度学习入门】——亲手实现图像卷积操作

深度学习中有一个很重要的概念就是卷积神经网络 CNN,卷积神经网络中又有卷积层、池化层的概念。尤其是卷积层,理解难度比较大,虽然书中或者是视频中都有详细介绍过它的基础概念,但对于求知欲望很强烈的我,我总心里痒痒的,总想亲手实现,看看效果,怕的就是自己会眼高手低,做技术人最可怕的就是眼高手低。所以,...

2018-03-22 16:46:22

阅读数:1410

评论数:4

提示
确定要删除当前文章?
取消 删除