数据结构
淡忘瞬间dream
快乐的生活,旅行中前进!
展开
-
链表的排序问题(C实现)
昨天室友让我帮忙写道考研辅导题,这道题主要就是考链表的排序,由于没有时间限制,就直接暴力破解了,后面抽时间再总结一下链表的排序几种算法。用C语言写这种数据结构的问题,最大的问题就是构造数据结构,这里我构造了一个单向链表存储员工信息,由于没有限制长度,这里我以‘-’作为输入结束的标志,在这里最难的点就是对于输入的理解(scanf\getchar())。输入函数:List ReadI...原创 2019-10-24 21:37:48 · 523 阅读 · 0 评论 -
数据结构——有序递增链表的归并
实现有序递增链表的归并,直接使用原序列中的结点,返回归并后的带头结点的链表头指针。首先要对链表的插入删除非常熟悉,这样才容易实现。下面是我对归并过程画的草图首先需要判断两个序列的第一个数大小,保存较小的数的头结点P1。然后将P2中小于或等于P1当前结点与下一结点数据范围内的序列短插入到P1中,直到P1或者P2指向NULL。实现过程不难,但是要熟悉链表的操作。下面是实现这一过程的函数部分...原创 2018-09-08 12:19:07 · 903 阅读 · 0 评论 -
数据结构——一元多项式乘法与加法
02-线性结构2 一元多项式的乘法与加法运算(20 分)设计函数分别求两个一元多项式的乘积与和。输入格式:输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。输出格式:输出分2行,分别以指数递降方式输出乘积多项式以及和多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。零...原创 2018-09-09 01:32:17 · 1976 阅读 · 0 评论 -
数据结构——Reversing Linked List
02-线性结构3 Reversing Linked List(25 分)Given a constant K and a singly linked list L, you are supposed to reverse the links of every K elements on L. For example, given L being 1→2→3→4→5→6, if K=3, the...原创 2018-09-09 14:35:34 · 375 阅读 · 0 评论 -
数据结构——栈的数组实现
栈是一种先入后出的数据结构,在计算机表达式求值时是一种常用的数据结构。具体提出:在解决需要判断将来问题才来作出判断时,常需要将当前的数据保存,而栈就是一种这样的数据结构,需要保存当前数据时,先压入堆栈,使用时再弹出。堆栈也可以认为是具有一定约束的线性表,其插入与删除都作用在同一个位置(栈顶)。一、对于栈的定义:1、栈存储的数据类型;2、栈顶;3、栈的最大容量;C语...原创 2018-09-09 19:28:03 · 418 阅读 · 0 评论 -
数据结构——一个数组实现两个堆栈
只用一个数组实现两个堆栈,这是很有意思的问题。首先我们得确定栈顶,很容易想到将数组底部与数组尾部分别作为两个栈顶。然后压栈、出栈的原理是一样的,可以参考我上一篇博客。下面我说一下要注意的地方:1、如何判断栈满?栈满的判断可以根据两个栈顶之间的距离来判断,当栈满时必然存在top2-top1 == 1。int ISFull(Stack S){ return S-&...原创 2018-09-09 19:37:15 · 874 阅读 · 0 评论 -
数据结构——栈的链表实现
栈的链表实现与数组实现原理差不多,只要熟悉链表的操作就能快速写出来。不过链表实现不需要考虑栈满的问题,因为栈的大小完全由你压栈决定。当然malloc申请的内存空间是有限的,超过了这个空间也不行。下面我讲一些创建空栈,压栈,出栈操作。1、创建空栈首先考虑,栈顶指针压栈的时候到底是往链表下端增加,还是往上增加。若往下增长,那么在出栈的时候,就无法实现,因为栈顶指针指向的是尾结点,单向链表是不能...原创 2018-09-10 01:14:07 · 733 阅读 · 0 评论 -
数据结构——中缀表达式转化为后缀表达式_栈实现
中缀表达式转化为后缀表达式是实现表达式计算的第一步。这里我给出了中缀表达式中数据为整数类型的转化,没有考虑浮点类型的转化。应用堆栈转化的基本过程:1、遇到运算符直接输出2、遇到左括号,压入堆栈3、遇到右括号,将栈顶元素弹出,直到遇到左括号。不输出括号。4、若遇到的运算符大于栈顶运算符优先级,则压入堆栈;否则,将栈顶弹出,直到该运算符大于栈顶优先级或者遇到左括号,然后将该运算符压入堆...原创 2018-09-10 01:33:18 · 631 阅读 · 1 评论