最少步数
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
这有一个迷宫,有0~8行和0~8列:
1,1,1,1,1,1,1,1,1
1,0,0,1,0,0,1,0,1
1,0,0,1,1,0,0,0,1
1,0,1,0,1,1,0,1,1
1,0,0,0,0,1,0,0,1
1,1,0,1,0,1,0,0,1
1,1,0,1,0,1,0,0,1
1,1,0,1,0,0,0,0,1
1,1,1,1,1,1,1,1,10表示道路,1表示墙。
现在输入一个道路的坐标作为起点,再如输入一个道路的坐标作为终点,问最少走几步才能从起点到达终点?
(注:一步是指从一坐标点走到其上下左右相邻坐标点,如:从(3,1)到(4,1)。)
-
输入
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
随后n行,每行有四个整数a,b,c,d(0<=a,b,c,d<=8)分别表示起点的行、列,终点的行、列。
输出
- 输出最少走几步。 样例输入
-
2 3 1 5 7 3 1 6 7
样例输出
-
12 11
解法一:
这道题使用DFS ,看似很简单,但是你需要明白它的递归过程,这是一个迷宫,直接用MG二维数组表示, 当进行第一样例测试时,MG[i][j]=1;会使所有为0的值变为1,使其全部为1,当然你不要忽略 MG[nx][ny]=0;,当某种情况遍历到出口,sum会记下最小步数,然后返回,这时就会使用MG[nx][ny]=0, 把刚才那条路径的值都返回原值0;当全部都遍历完时,也就找到了最小步数,MG中也都返回了原值0; 不过这个时候你要注意了,main函数中MG[x1][y1]=0;这一代码非常重要,他是返回开始节点的值为0;使MG 这个表完全变成开始的时候,然后进行下一个测试样例。 */ #include<cstdio> #include<algorithm> #include<iostream> using namespace std; int x1,y1,x2,y2,sum; int dx[4]={0,-1,0,1},dy[4]={-1,0,1,0}; int MG[9][9]={ {1,1,1,1,1,1,1,1,1}, {1,0,0,1,0,0,1,0,1}, {1,0,0,1,1,0,0,0,1}, {1,0,1,0,1,1,0,1,1}, {1,0,0,0,0,1,0,0,1}, {1,1,0,1,0,1,0,0,1}, {1,1,0,1,0,1,0,0,1}, {1,1,0,1,0,0,0,0,1}, {1,1,1,1,1,1,1,1,1} }; void dfs(int i,int j,int s) { if(i==x2&&j==y2){ if(s<sum)sum=s; return; } MG[i][j]=1; for(int m=0;m<4;m++){ int nx=i+dx[m]; int ny=j+dy[m]; if(!MG[nx][ny]) { dfs(nx,ny,s+1); MG[nx][ny]=0; } } } int main() { int test; scanf("%d",&test); while(test--){ scanf("%d%d%d%d",&x1,&y1,&x2,&y2); sum=1000; dfs(x1,y1,0); MG[x1][y1]=0; //对于这个限定条件用的真绝 printf("%d\n",sum); } return 0; }
解法二:
使用BFS进行求解,速度稍微慢了点,
使用队列,又用了pair成对容器记录坐标(x,y)
#include<cstdio> #include<queue> #include<algorithm> #include<iostream> #define INF 10000 using namespace std; typedef pair<int,int> P; //使用pair成对表示坐标(x,y) int x1,y1,x2,y2,d[9][9]; //记录最短路径 int dx[4]={0,-1,0,1},dy[4]={-1,0,1,0}; int MG[9][9]={ {1,1,1,1,1,1,1,1,1}, {1,0,0,1,0,0,1,0,1}, {1,0,0,1,1,0,0,0,1}, {1,0,1,0,1,1,0,1,1}, {1,0,0,0,0,1,0,0,1}, {1,1,0,1,0,1,0,0,1}, {1,1,0,1,0,1,0,0,1}, {1,1,0,1,0,0,0,0,1}, {1,1,1,1,1,1,1,1,1} }; int Bfs(int i,int j) { queue<P> que; que.push(P(i,j)); d[i][j]=0; while(que.size()){ P a=que.front();que.pop(); if((a.first==x2)&&(a.second==y2))break; //当第一次遍历到终点时,也就是最短的路径,因为他是BFs for(int m=0;m<4;m++){ int nx=a.first+dx[m]; int ny=a.second+dy[m]; if(MG[nx][ny]!=1&&d[nx][ny]==INF){ que.push(P(nx,ny)); d[nx][ny]=d[a.first][a.second]+1; } } } return d[x2][y2]; } int main() { int test; scanf("%d",&test); while(test--){ scanf("%d%d%d%d",&x1,&y1,&x2,&y2); for(int m=0;m<9;m++) for(int n=0;n<9;n++)d[m][n]=INF; int sum=Bfs(x1,y1); printf("%d\n",sum); } return 0; }
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;