基础决策理论与应用
1. 决策问题概述
决策问题在许多复杂场景中都有应用,其决策步骤常比常见决策理论应用更简单。因为规划问题受多种因素影响,若特定应用中的决策步骤已难以解决,扩展到规划就会变得困难。以下介绍决策理论在模式分类和参数估计方面的应用。
2. 模式分类
2.1 模式分类问题描述
模式分类是计算机视觉和机器学习领域的活跃研究方向。一般问题是利用一组数据进行分类,例如在计算机视觉中,数据对应从图像中提取的信息,用于对物体进行分类。
这里的模式分类是高度理想化的版本,假设所有合适的模型细节,包括所需的概率分布都已知。但在实际应用中,获取这些数据可能代价高昂或难以实现,甚至有些问题是无监督的,需要自动发现可能的类别,因此模式分类仍是具有挑战性的研究领域。
一般模型是:自然先确定类别,然后获取关于该类别的观测值,最后机器人根据观测值猜测正确的类别。设 $\Theta$ 表示有限的类别集合,由于机器人要猜测类别,所以 $U = \Theta$。定义一个简单的成本函数来衡量 $u$ 和 $\theta$ 之间的不匹配:
[
L(u, \theta) =
\begin{cases}
0, & \text{如果 } u = \theta \text{(正确分类)}\
1, & \text{如果 } u \neq \theta \text{(错误分类)}
\end{cases}
]
在非确定性模型中,如果使用动作 $u$ 可能导致分类错误,则成本为 1。在概率模型中,上述成本函数的期望给出了给定动作 $u$ 时发生分类
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



