53、基础决策理论与应用

基础决策理论与应用

1. 决策问题概述

决策问题在许多复杂场景中都有应用,其决策步骤常比常见决策理论应用更简单。因为规划问题受多种因素影响,若特定应用中的决策步骤已难以解决,扩展到规划就会变得困难。以下介绍决策理论在模式分类和参数估计方面的应用。

2. 模式分类

2.1 模式分类问题描述

模式分类是计算机视觉和机器学习领域的活跃研究方向。一般问题是利用一组数据进行分类,例如在计算机视觉中,数据对应从图像中提取的信息,用于对物体进行分类。

这里的模式分类是高度理想化的版本,假设所有合适的模型细节,包括所需的概率分布都已知。但在实际应用中,获取这些数据可能代价高昂或难以实现,甚至有些问题是无监督的,需要自动发现可能的类别,因此模式分类仍是具有挑战性的研究领域。

一般模型是:自然先确定类别,然后获取关于该类别的观测值,最后机器人根据观测值猜测正确的类别。设 $\Theta$ 表示有限的类别集合,由于机器人要猜测类别,所以 $U = \Theta$。定义一个简单的成本函数来衡量 $u$ 和 $\theta$ 之间的不匹配:
[
L(u, \theta) =
\begin{cases}
0, & \text{如果 } u = \theta \text{(正确分类)}\
1, & \text{如果 } u \neq \theta \text{(错误分类)}
\end{cases}
]

在非确定性模型中,如果使用动作 $u$ 可能导致分类错误,则成本为 1。在概率模型中,上述成本函数的期望给出了给定动作 $u$ 时发生分类

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值