题目大意:
给出整数N(0 ≤ N ≤ 10^9),找出一个最小的整数Q,使得将Q的每一位相乘之后等于N
例如N=18,则Q可能取值为:29(2×9=18),36(3×6=18),63(6×3=18),92(9×2=18)
那么我们只要取最小值29即为结果 输入:整数N(0 ≤ N ≤ 10^9) 输出:如果存在这样的Q,则输出Q,如果不存在,输出-1
package com.liuhao.acm.exam;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* @author liuhao 给出整数N(0 ≤ N ≤ 10^9),找出一个最小的整数Q,使得将Q的每一位相乘之后等于N
* 例如N=18,则Q可能取值为:29(2×9=18),36(3×6=18),63(6×3=18),92(9×2=18)
* 那么我们只要取最小值29即为结果 输入:整数N(0 ≤ N ≤ 10^9) 输出:如果存在这样的Q,则输出Q,如果不存在,输出-1
*/
public class NewIntProduct {
public static int getNew(int input) {
// 若该数是各位数,那么最小的肯定是1X该数
if (input >= 0 && input <= 9) {
return 10 + input;
}
List<Integer> list = new ArrayList<Integer>();// 存放满足要求的乘数
list = getNew(input, list);// 递归获取
// 若list中含有-1,说明初始数input本身或者input的约数不满足条件
if (list.contains(-1)) {
return -1;
}
// 将list排序
Collections.sort(list);
int len = list.size();
int result = 0;// 最终的返回值
// 根据list中的各位数拼成最终的返回值
for (int i = len - 1; i >= 0; i--) {
result += Math.pow(10, len - 1 - i) * list.get(i);
}
return result;
}
/**
* @param n
* 初始数
* @param list
* 满足要求的乘数
* @return
*/
private static List<Integer> getNew(int n, List<Integer> list) {
// 若初始数已经是一个个位数,则直接添加到list中,并跳出递归
if (n >= 0 && n <= 9) {
list.add(n);
return list;
}
boolean flag = false;// 是否存在个位数的约数的标志
// 依次用9-2,作为除数,看初始数是否存在个位数的约数
for (int i = 9; i >= 2; i--) {
// 若存在
if (n % i == 0) {
flag = true;
list.add(i);// 将该约束添加到list中
getNew(n / i, list);// 递归查找商数的满足条件的约束
break;
}
}
// 不存在,说明不满足条件
if (!flag) {
list.add(-1);
}
return list;
}
public static void main(String[] args) {
System.out.println(getNew(18));
}
}