从16年的AlphaGo,到17年的AlphaZero,再到18年的AlphaFold,再到2020的GPT-3,人工智能演化发展的速度进一步加快。GP从11亿参数的GPT到150亿参数的GPT-2,再到1750亿参数的GPT-3。
1750亿参数的GPT-3。
为了训练GPT-3,微软新建了一个搭载了1万张显卡,价值5亿美元的算力中心。
模型在训练上则消耗了355个GPU年的算力,而成本超过460万美元。
其成果是显而易见的,GPT-3不仅在NLP方面取得了惊人的成就。
GP从11亿参数的GPT到150亿参数的GPT-2,再到1750亿参数的GPT-3。
今年1月,2000亿参数的鹏程.盘古发布。模型学习了40TB中文文本数据,视觉方面则包含超过30亿参数,兼顾了图像判别与生成能力,模型在16个下游任务中大部分指标优于SOTA模型,
除了大规模,多模态也是人工智能发展的重要方向,中科院自动化所推出了全球首个三模态大模型:紫东.太初。获得了MM2021视频描述国际竞赛的第一名,ICCV2021视频理解国际竞赛第一名。