剑指Offer28:字符串排列问题

字符串排列问题

问题描述

输入一个字符串,打印出该字符串中字符的所有排列。例如输入字符串abc,则打印出字符a、b、c所能排列出来 的所有字符串abc、bac、bca、cab、cba。

问题分析

 *      求整个字符串的全排列,可以看成两步:
 *          第一步、首先求所有可能出现在第一个位置的字符,即把第一个字符和后面所有的字符交换;
 *          第二步、固定第一个字符,求后面所有字符的排列。
 *      这时候仍然把后面的字符分成两部分,后面的第一个字符,和这个字符之后的所有字符,然后把后面的第一个字符和它后面的字符交换。

问题升级

如果不是求字符的所有排列,而是求字符的所有组合,该如何解决呢?例如还是输入三个字符abc,则它们的组合有a、b、c、ab、ac、bc、abc。当交换字符串中两个字符时,虽然能得到两个不同的排列,如ab和ba是不同的排列,但是算一个组合。

升级问题分析

 * 解题思路:
 *      如果输入n个字符,则这个n个字符能够组成长度为1的组合,长度为2的组合,....,长度为n的组合。在求n个字符的长度为m(1<=m<=n)的组合的时候,我们把这n个字符
 *      分成两部分:第一个字符和其余的所有的字符。如果组合里面包含第一个字符,则下一步在剩余的字符里面选取m-1个字符;如果组合里不包含第一个字符,则下一步在
 *      剩余的n-1个字符里选取m个字符。也就是说,我们可以把求n个字符组成长度为m的组合的问题,分解成两个子问题,分别求n-1个字符串中长度为m-1的组合,以及
 *      求n-1个字符的长度为m的组合。这两个子问题都可以用递归实现。
public class Code028 {
    public static void main(String[] args){
        Scanner sc=new Scanner(System.in);
        String inLine=sc.nextLine();
        //排列问题
//        permutation(inLine);
        //组合问题
        combination(inLine);
    }
    private static void permutation(String str){
        //如果字符串为空则直接返回
        if(str==null || str.length()==0){
            return;
        }
        //否则将字符串转换为字符数组,并从0位置开始进行全排列
        permutation(str.toCharArray(),0);
    }
    private static void permutation(char[] chars, int position) {
        if(position==chars.length-1){
            System.out.println(chars);
        }
        for(int i=position;i<chars.length;i++){
            //将首字符和它后面的字符进行交换
            char temp=chars[i];
            chars[i]=chars[position];
            chars[position]=temp;
            //递归调用求后面字符的全排列
            permutation(chars,position+1);
            //由于前面交换了一下,所以chars的内容改变了,需要还原回来
            temp=chars[i];
            chars[i]=chars[position];
            chars[position]=temp;
        }
    }
    //问题升级
    private static void combination(String str){
        //如果字符串为空则直接返回
        if(str==null || str.length()==0){
            return;
        }
        char[] chars=str.toCharArray();
        char[] subchars=new char[chars.length];//存储子组合数据的数组
        //全组合问题就是所有元素(记为n)中选一个元素的组合,加上2个元素的组合...加上选n个元素的组合
        for(int i=0;i<chars.length;i++){
            //定义变量m记为组合中字符元素的个数
            final int m=i+1;
            combination(chars,chars.length,m,subchars,m);
        }
    }

    /**
     * n个元素选m个元素的组合问题的实现. 原理如下: 从后往前选取, 选定位置i后, 再在前i-1个里面选取m-1个. 如: 1, 2, 3, 4,5 中选取3个元素.
     *      1) 选取5后, 再在前4个里面选取2个, 而前4个里面选取2个又是一个子问题, 递归即可;
     *      2) 如果不包含5,直接选定4, 那么再在前3个里面选取2个, 而前三个里面选取2个又是一个子问题, 递归即可;
     *      3) 如果也不包含4, 直接选取3,那么再在前2个里面选取2个, 刚好只有两个.
     * 纵向看, 1与2与3刚好是一个for循环, 初值为5, 终值为m. 横向看,该问题为一个前i-1个中选m-1的递归.
     */
    private static void combination(char[] chars, int n, int m, char[] subchars, int subn) {
        if(m==0){
            //打印输出组合中的每个字符;subn:为组合中字符元素的个数
            for(int i=0;i<subn;i++){
                System.out.print(subchars[i]);
            }
            System.out.println();
        }else {
            for(int i=n;i>=m;i--){
                //取第i个字符,放置到组合数组的第m个位置
                subchars[m-1]=chars[i-1];
                //从i-1个字符中,取m-1个字符添加到组合中
                combination(chars,i-1,m-1,subchars,subn);
            }
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值