51nod - 1215 数组的宽度

N个整数组成的数组,定义子数组a[i]..a[j]的宽度为:max(a[i]..a[j]) - min(a[i]..a[j]),求所有子数组的宽度和。

Input

第1行:1个数N,表示数组的长度。(1 <= N <= 50000)
第2 - N + 1行:每行1个数,表示数组中的元素(1 <= A[i] <= 50000)

Output

输出所有子数组的宽度和。

Input示例

5
1
2
3
4
5

Output示例

20

 

思路:

用单调递减栈计算每个数作为最大值影响的区间,区间数量乘以这个数的值就是这个数作为最大值的贡献。

同理,用单调递增栈计算每个数作为最小值影响的区间,区间数量乘以这个数的值就是这个数作为最小值的贡献。

 

#include<iostream>  
#include<cstdio>  
#include<cstring>  
using namespace std;  

typedef long long ll;  
const int MAXN = 5e5 + 10;  
int a[MAXN], s[MAXN]; 
      
int main()  
{  
    int n;  
	cin >> n;
	
	for (int i = 1; i <= n; i++)
	{
		cin >> a[i];
	}

    a[++n] = 0;  
    ll sum1 = 0, sum2 = 0;  
    int top = 0;  
	for (int i = 1; i <= n; i++)
    {  
        while (top && a[i] < a[s[top]])  
        {  
            sum1 += 1ll * (s[top] - s[top - 1]) * (i - s[top]) * a[s[top]];  
            top--;  
        }  
        s[++top] = i;  
    }  

    a[n] = MAXN; 
    top = 0;  
	for (int i = 1; i <= n; i++)
    {  
        while (top && a[i] > a[s[top]]) 
        {  
            sum2 += 1ll * (s[top] - s[top - 1]) * (i - s[top]) * a[s[top]];  
            top--;  
        }  
        s[++top] = i;  
    }  
	cout << sum2 - sum1 << endl;
    return 0;  
}  

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值