等幂映射

等幂映射是这样定义的,对于一个映射  g : {1,2,...,n}  {1,2,...,n}  ,对于所有的  x {1,2,...,n}  , g(g(x))=g(x)始终成立。

   f(k)(x)  表示将映射f作用于x上k次的结果。一般的,  f(1)(x) = f(x) f(k)(x) = f(f(k1)(x))  对于所有的k>1成立。

现在给定一个映射  f : {1,2,...,n}  {1,2,...,n}  。你的任务是寻找最小的k使得  f(k)(x)  是一个等幂映射。

样例解释:这个例子中   f(x) = f(1)(x)  已经是一个等幂映射,因为他已经满足定义: f(f(1))=f(1)=1, f(f(2))=f(2)=2, f(f(3))=f(3)=2,f(f(4))=f(4)=4。


Input
单组测试数据。
第一行包含一个整数 n (1 ≤ n ≤ 200)。
第二行给出 f(1), f(2), ..., f(n) (1 ≤ f(i) ≤ n)。
Output
输出最小满足条件的k。
Input示例
4
1 2 2 4
Output示例
1
#include <stdio.h>
#include <cstring>
#include <iostream>
using namespace std;

typedef long long ll;
const int MAXN = 210;
int f[MAXN];
int m[MAXN];

ll gcd(ll a, ll b)
{
	if (b == 0)
	{
		return a;
	}

	return gcd(b, a % b);
}

ll lcm(ll a, ll b)
{
    return a / gcd(a, b) * b;
}

int main()
{
    int n;
	cin >> n;
    for (int i = 1; i <= n; ++i)
    {
		cin >> f[i];
    }

	int j, next;
	ll result = 1;
	ll temp;
	int top = 1;
    for (int i = 1; i <= n; ++i)
    {
        memset(m, 0, sizeof(m));
        j = i;
        m[f[j]] = 1;
    
		while (true)
        {
            next = f[j];
            if (m[f[next]])
            {
                temp = m[f[j]] + 1 - m[f[next]];
                if (top < m[f[next]])
                {
                    top = m[f[next]];
                }
                break;
            }
            m[f[next]] = m[f[j]] + 1;
            j = next;
        }
        result = lcm(result, temp);
    }

    temp = result;
    while (result < top)
    {
        result += temp;
    }
	cout << result << endl;

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值