小 Q 有 n 个砝码,它们的质量分别为 1 克、 2 克、……、 n 克。
他给 i 克的砝码标上了编号 i (i = 1, 2, ..., n),但是编号被人打乱了,即编号为 i 的砝码不一定是 i 克,而是 a_i 克,这里 a 指的是 1 到 n 的一个排列。
他有一杆天平,可以向天平的两侧放任意数量的砝码,通过一次称量得到两侧质量的大小关系,关系只有左侧重、一样重、右侧重三种可能。
他想知道,最坏情况下,他至少需要称量多少次,才能确定其中至少一个编号为 i 的砝码的质量是 i 克或不是 i 克。
提示:这里所谓的最坏情况是指,对于固定的、按顺序进行的称量操作,不论每次称量的结果是什么,都能完成所需完成的上述判定任务。
例如 n = 6 时,可以只称量一次,选择编号为 1、 2、 3 的砝码放在左侧,编号为 6 的砝码放在右侧。
如果天平不是平的,则可以确定
存在至少一个砝码 i 不是 i 克 (i = 1, 2, 3, 6),否则编号为 6 的砝码一定是 6 克。
再例如 n = 5 时,可以只称量两次,第一次选择编号为 2、3 的砝码放在左侧,编号为 5 的砝码放在右侧,第二次选择编号为 1、4 的砝码放在左侧,编号为 5 的砝码放在右侧。
这里略去这样称量的正确性,留给做题人推导和证明。
Input
输入包含多组测试数据。 每行对应一组测试数据,包含一个正整数 n 。 不超过 10^5 组数据,1 ≤ n ≤ 10^9。
Output
每行对应一组测试数据,输出一个正整数表示答案。
Input示例
1 5 6
Output示例
0 2 1
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
ll n;
while (cin >> n)
{
if (n == 1)
{
cout << 0 << endl;
continue;
}
ll a = ((ll)sqrt(8 * n + 1) - 1) / 2;
ll b = a * (a + 1) / 2;
ll c = n * (n + 1) / 2;
ll d = (ll)sqrt(c) * (ll)sqrt(c);
if (b == n || b + 1 == n)
{
cout << 1 << endl;
}
else if (d == c || d + 1 == c)
{
cout << 1 << endl;
}
else
{
cout << 2 << endl;
}
}
return 0;
}