设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下: subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;(1)tree的最高加分(2)tree的前序遍历
输入
第1行:一个整数n(n<30),为节点个数。第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。
输出
第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。第2行:n个用空格隔开的整数,为该树的前序遍历。
样例输入
5
5 7 1 2 10
样例输出
145
3 1 2 4 5
思路:
对于已知的中序遍历,计算某个区间的最大加分时,分别考虑用区间内的某个点作为该区间子树的根节点。
在计算过程中记下每个区间的根节点,然后遍历打印根节点就能得到前序遍历的结果。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN = 50;
int dp[MAXN][MAXN];
int root[MAXN][MAXN];
int a[MAXN];
int n;
bool vis = false;
void visit(int l, int r)
{
if (l == r)
{
cout << l << " ";
return;
}
cout << root[l][r] << " ";
if (l <= (root[l][r] - 1))
{
visit(l, root[l][r] - 1);
}
if ((root[l][r] + 1) <= r)
{
visit(root[l][r] + 1, r);
}
}
int best(int l, int r)
{
if (l > r)
{
return 1;
}
if (dp[l][r] == 0)
{
for (int i = l; i <= r; i++)
{
int temp = best(l, i-1) * best(i+1, r) + a[i];
if (temp > dp[l][r])
{
dp[l][r] = temp;
root[l][r] = i;
}
}
}
return dp[l][r];
}
int main ()
{
cin >> n;
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= n; i++)
{
cin >> a[i];
dp[i][i] = a[i];
}
int result = best(1, n);
cout << result << endl;
visit(1, n);
return 0;
}