TYVJ 1073 加分二叉树

设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下: subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;(1)tree的最高加分(2)tree的前序遍历
输入
第1行:一个整数n(n<30),为节点个数。第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。
输出
第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。第2行:n个用空格隔开的整数,为该树的前序遍历。
样例输入

5
5 7 1 2 10

样例输出

145

3 1 2 4 5
 

思路:

对于已知的中序遍历,计算某个区间的最大加分时,分别考虑用区间内的某个点作为该区间子树的根节点。

在计算过程中记下每个区间的根节点,然后遍历打印根节点就能得到前序遍历的结果。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;

const int MAXN = 50;
int dp[MAXN][MAXN];
int root[MAXN][MAXN];
int a[MAXN];
int n;
bool vis = false;

void visit(int l, int r)
{
	if (l == r)
	{
		cout << l << " ";
		return;
	}

	cout << root[l][r] << " ";

	if (l <= (root[l][r] - 1))
	{
		visit(l, root[l][r] - 1);
	}
	if ((root[l][r] + 1) <= r)
	{
		visit(root[l][r] + 1, r);
	}
}

int best(int l, int r)
{
	if (l > r)
	{
		return 1;
	}

	if (dp[l][r] == 0)
	{
	    for (int i = l; i <= r; i++)
	    {
			int temp = best(l, i-1) * best(i+1, r) + a[i];
			if (temp > dp[l][r])
			{
				dp[l][r] = temp;
				root[l][r] = i;
			}
	    }
	}
	return dp[l][r];
}

int main ()
{
	cin >> n;
	memset(dp, 0, sizeof(dp));

	for (int i = 1; i <= n; i++)
	{
		cin >> a[i];
		dp[i][i] = a[i];
	}

	int result = best(1, n);
	cout << result << endl;

	visit(1, n);

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值