自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

brucexia的专栏

清华大学出版社夏编辑

  • 博客(723)
  • 资源 (10)
  • 收藏
  • 关注

原创 GraphPad Prism项目的管理

项目是GraphPad Prism系统进行数据管理、存储的基本文件,掌握项目的基本操作是进行各种数据管理操作的基础。本节将对项目的创建和保存设置进行详细介绍。

2025-05-16 15:04:33 998

原创 OpenCV图像旋转原理及示例

图像旋转是指图像以某一点为中心旋转一定的角度,形成一幅新的图像的过程。另外一种是以任意图形中的某点为坐标原点进行旋转。图像的旋转变换是图像的位置变换,旋转后图像的大小一般会改变。在图像旋转变换中,既可以把转出显示区域的图像截去,也可以扩大图像范围以显示所有的图像。图像旋转后,图像的水平对称轴、垂直对称轴及中心坐标原点都可能发生变换,因此需要对图像旋转中的坐标进行相应转换。在OpenCV中,图像旋转首先根据旋转角度和旋转中心获取旋转矩阵,然后根据旋转矩阵进行变换,即可实现任意角度和任意中心的旋转效果。

2025-05-15 15:24:59 922

原创 【图书推荐】几本人工智能实用性图书

《OpenCV计算机视觉开发实践:基于Python》【摘要 书评 试读】- 京东图书《PyTorch深度学习与计算机视觉实践(人工智能技术丛书)》(王晓华)【摘要 书评 试读】- 京东图书《图神经网络基础、模型与应用实战(人工智能技术丛书) deepseek教程》(兰伟,叶进,朱晓姝)【摘要 书评 试读】- 京东图书《ChatGLM3大模型本地化部署、应用开发与微调deepseek教程》(王晓华)【摘要 书评 试读】- 京东图书《深入探索Mamba模型架构与应用(人工智能技术丛书)》(王晓华)【摘要 书评

2025-05-15 15:10:12 463

原创 GraphPad Prism简介、安装与工作界面

GraphPad Prism 将科学绘图、综合曲线拟合(包括非线性回归)、易于理解的统计分析以及数据管理功能集于一身,帮助用户组织、分析并标注重复性实验的结果。

2025-05-14 17:29:44 1029

原创 OpenCV实现数字水印的相关函数和示例代码

我们把一副水印图像(watermark.bmp)嵌入原始载体图像(src.bmp)中变为目标载体图像(也称含水印的载体图像)dst,然后从dst中提取出水印数据存于getWatermark中,最后显示4种图像。具体来说,对于每个像素,将两幅输入图像相应位置的像素值分别进行按位与运算,输出的结果图像的对应像素值即为这两幅输入图像对应像素值的按位与结果。在图14-5中,左边是原来的数字水印图像,右边是从目标载体图像中提取出来的数字水印图像,可以发现两者并没有变化。下面再看水印图像,如图14-5所示。

2025-05-14 17:02:31 927

原创 音频特征工具Librosa包的使用

要使用深度学习与语音特征进行抽取,首先需要准备能够对语音特征进行解析的工具。Librosa是一个用于音频、音乐分析与处理的Python工具包,常见的时频处理、特征提取、绘制声音图形等功能应有尽有,功能十分强大。Librosa提供了多种音频读取和写入的方法,支持多种音频格式的读取和写入,如WAV、FLAC、MP3等。Librosa提供了多种音频特征提取的方法,如MFCC、Chromagram等。此外,Librosa还提供了多种音频可视化的方法,如绘制声谱图、绘制频谱图等。

2025-05-13 09:51:07 1360

原创 【图书推荐】《GraphPad Prism图表可视化与统计数据分析(视频教学版)》

本书以GraphPad Prism 10为平台,讲述统计分析软件GraphPad Prism的具体应用方法。在介绍本书内容的过程中,作者结合自己多年的工作经验及学习的通常心理,及时给出总结和相关提示,帮助读者快速掌握所学的知识。本书配套示例源文件、PPT课件、教学视频、课程标准、教学大纲和教案。

2025-05-13 08:42:00 747

原创 DeepSeek混合专家模型的基本结构

混合专家模型(MoE)是一种深度学习架构,它通过集成多个专家模型(即子模型)来提升整体模型的预测性能和效率。每个专家网络专门处理输入数据的一个子集或特定特征,而门控网络则负责根据输入动态地选择合适的专家模型进行处理,它们之间使用专门的负载平衡与优化对资源进行调配。混合专家模型通过动态地选择和组合多个专家模型来处理输入数据,实现了高效计算与优异性能的平衡。混合专家模型是一种深度学习中的集成学习方法,它通过组合多个专家模型(即子模型)来形成一个整体模型,旨在实现高效计算与优异性能的平衡。

2025-05-12 11:11:54 394 1

原创 OpenCV实现一个视频播放器

通过OpenCV实现视频播放器,其思路大致就是在线程中使用OpenCV的VideoCapture循环读取本地视频的每一帧Mat,然后将其发送到界面转换成QImage进行显示,而进度条拖动则用到了VideoCapture中的set函数,进度条则使用QSlider,并且通过自定义新的进度条类实现单击跳转功能。限于篇幅,其他控件的事件处理函数不在这里给出,具体可以查看本书配套资源中的源码工程中的widget.cpp。运行程序,/root/下的hd.mp4就可以播放了,按暂停键后的界面如图12-9所示。

2025-05-12 10:35:20 544 1

原创 DeepSeek基于注意力模型的可控图像生成

可见,我们使用生成代码绘制了去噪过程的图像,展示了从完全噪声的图像逐步还原为清晰图像的过程。通过调整通道顺序和像素值范围,它将tensor格式的图像转换为适合绘制的格式,并使用matplotlib库的subplot函数在一个大图中展示了所有步骤的图像。DiT模型的可控图像生成是在我们训练的基础上,逐渐对正态分布的噪声图像进行按步骤的脱噪过程。在扩散模型的训练过程中,首先需要对输入的信号进行加噪处理,经典的加噪过程是在图像进行向量化处理后在其中添加正态分布,而正态分布的值也是与时间步相关的。

2025-05-09 11:04:41 1149

原创 OpenCV播放摄像头视频

由于目前是在Linux虚拟机中,因此当我们在主机上插上USB摄像头后,需要先连接USB摄像头到虚拟机。启动Linux虚拟机后,依次单击VMware的菜单“虚拟机”→“可移动设备”→“Nintenda USB Camera”→“连接(断开与主机的连接)”,“连接(断开与主机的连接)”菜单上就会出现一个“√”,说明USB摄像头连接到Linux虚拟机中了。打开成功后,就可以一帧一帧地读取并一帧一帧地播放了,其实就是在一个循环里,间隔地显示一幅一幅视频帧图片,当间隔时间短了,图片动起来了,就感觉是在看视频了。

2025-05-09 10:58:32 725

原创 低代码平台开发之模板引擎

同时,由于模板引擎支持多种文档类型的输出,因此它也可以被广泛应用于各种需要动态内容生成的场景中,如电子邮件、配置文件、报告等。除了简单的数据替换,模板引擎还支持更为复杂的逻辑操作。因此,如果你需要热更新的功能,建议查看你正在使用的模板引擎的官方文档或社区资源,以了解如何在你的项目中实现它。当模板引擎接收到实际的数据输入时,它会遍历整个模板文件,查找所有的占位符,并用对应的数据进行替换。模板引擎在低代码平台中的应用具有诸多优势,特别是当使用FreeMarker这样的强大模板引擎时,其应用变得更加广泛和高效。

2025-05-08 15:30:43 879

原创 DeepSeek基于通道注意力的图像分类

使用卷积进行图像识别已经成为计算机视觉领域的一种重要技术。卷积神经网络(CNN)通过其独特的卷积层结构,能够有效地提取图像中的特征信息,进而实现高精度的图像识别。在图像识别过程中,卷积层扮演着关键角色。它通过滑动卷积核(也称为滤波器)来遍历整个图像,捕捉图像中的局部特征,如边缘、纹理等。这种局部特征提取方式不仅有助于减少模型的参数数量,还能提高模型对图像平移、缩放等变换的鲁棒性。随着卷积层的逐层深入,网络能够逐渐捕捉到更加抽象和高级的特征表示。这些特征在后续的分类或识别任务中发挥着至关重要的作用。

2025-05-08 15:27:31 1010

原创 DeepSeek自编码架构的拼音汉字生成模型

本节将综合运用前两节的知识,通过实战来检验编码器的性能—具体任务是完成拼音与汉字之间的转换训练。类似图3-17所示的效果。图3-17 拼音和汉字这种能够直接将一种序列转换为另一种序列的模型,在实际应用中,我们称之为自编码生成模型。接下来,我们将详细阐述如何使用这个自编码生成模型来完成拼音与汉字的转换。首先,我们需要准备相应的训练数据,即拼音与对应汉字的配对数据集。这些数据将作为模型的输入和期望输出,帮助模型学习从拼音到汉字的映射关系。

2025-05-07 11:30:12 815 1

原创 使用OpenCV的VideoCapture播放视频文件示例

apiPreference表示首选使用的后端捕获API,默认是使用任意捕获API,用宏CAP_ANY来表示,多数情况下,由于我们只有一个摄像机,因此没必要指定摄像机的域,此时使用cv::CAP_ANY是一种高效的方式。如果是从摄像机中读取视频,这种情况下,构造函数会给出一个整型索引参数,用于表示想要访问的摄像机。播放视频文件的基本步骤就是先构造VideoCapture对象,再打开视频文件,接着用一个循环逐帧读取并显示读取到的视频帧,然后间隔一段时间读取下一个视频帧并显示,依次循环,直到全部视频帧读取完毕。

2025-05-07 11:06:22 816

原创 OpenCV的floodFill(漫水填充)分割

另外需要注意的是,mask会比需填充的图像大,所以mask中与输入图像(x,y)像素点相对应的点的坐标为(x+1,y+1)。参数mask也是输入/输出参数,是第二个版本的floodFill独享的,表示操作掩膜,它应该为单通道、8位、长和宽上都比输入图像image大两个像素点的图像。使用C++重写过的floodFill函数有两个版本,一个是不带mask的版本,另一个是带mask的版本。漫水填充算法的原理很简单,就是从一个点开始遍历附近的像素点,并填充成新的颜色,直到封闭区域内所有像素点都被填充成新颜色为止。

2025-05-06 11:50:38 1148

原创 DeepSeek大模型原生应用和多模态应用开发案例

基于DeepSeek的跨平台智能客服应用开发。基于torchvision的端到端视频分类。这本书的案例整理出来给有需要的人士参考。基于注意力模型的酒店评论情感判断。基于MoE与自注意力的图像分类。基于交叉注意力的端到端语音识别。自编码架构的拼音汉字生成模型。基于自回归模型的酒店评论生成。基于MLA的人类语音情感分类。基于注意力模型的可控图像生成。基于VQ-VAE的手写体生成。基于混合专家模型的情感分类。基于通道注意力的图像分类。基于FSQ算法的语音存储。基于FSQ的人脸生成。基于注意力的视频分类。

2025-05-06 11:36:35 322

原创 基于Mamba的知识图谱模型构建

在深入本章内容之前,我们有必要了解知识图谱的基本概念。从本质上而言,知识图谱是一种特殊的语义网络,它以图状数据结构为基础,包含节点(Points)与边(Edges),形象展示如图14-1所示。在这种图谱中,每一个节点都代表着现实世界中的一个具体“实体”,而每一条边则描绘了这些实体之间的“关系”纽带。可以说,知识图谱是表达关系的一种极致方式。简单来说,它就是将各类异构信息(Heterogeneous Information)巧妙地连接在一起,从而构建出一个错综复杂的关系网络。

2025-04-30 14:15:02 909 1

原创 OpenCV的grabCut算法分割图像

grabCut算法是Graphcut算法的改进,Graphcut是一种直接基于图割算法的图像分割技术,只需确认前景和背景的输入,该算法就可以完成前景和背景的最优分割。其用法很简单,只需输入一幅图像,并对一些像素进行标记,指明其属于背景或前景,算法就会根据这些局部标记计算出整个图像中前景和背景的分割线。函数compare在两个图像之间进行逐像素的比较,并输出比较的结果。(4)根据我们给的数据,GMM学习和创建新的像素分布,未知像素被标为可能的前景或可能的背景(根据其他硬标记像素的颜色统计和它们之间的关系)。

2025-04-30 14:04:23 1179

原创 低代码平台的流程引擎

流程引擎(Process Engine)是一种用于管理和执行业务流程的软件技术或工具。流程引擎基于一组节点与执行界面,通过人机交互的形式自动地执行与协调各个任务和活动。它可以实现任务的分配、协作、路由和跟踪。通过流程引擎,组织能够实现业务流程的优化、标准化和自动化,提高工作效率和质量。总的来说,它是一套低代码工具,能帮助我们可视化地对业务流程进行设计和修改。

2025-04-29 15:19:05 736

原创 基于Mamba2的文本生成实战

本节将演示一个使用Mamba2模型完成文本生成任务的示例。在这个过程中,我们将充分利用已有的数据集来训练和优化Mamba2模型,以实现高质量的文本生成效果。

2025-04-29 15:13:32 403

原创 低代码平台的应用场景与优势

低代码平台(Low-Code Platform)是一种软件开发能力,它允许平台用户(包含研发外的角色)通过图形化界面和预构建的功能或者模块,支持用户快速搭建业务功能,实现高效投产上线。当然,在定制化场景下可能需要辅助代码开发。这种平台降低了编程的复杂性,使开发者能够专注于业务逻辑和用户体验,而无需关注底层的编程细节。下面来看一下作者在日常工作中经常会被问及的三个关于低代码平台相关的疑问。

2025-04-28 16:24:10 745

原创 Mamba2模型的实现

(形状为(batch, seqlen, d_model)),通过一个线性层(nn.Linear),该层将输入映射到一个更高维的空间,以便模型能够捕捉到更丰富的特征。部分通过一个一维卷积层,该层用于捕捉序列中的局部依赖关系。这里简单地完成了注意力计算,即对输入的序列内容进行注意力建模,而mask的存在可以使得模型在计算时只关注前面步骤中的Token而不会“窥视”未来的内容。Mamba2模型通过结合SSD的高效计算、一维卷积的局部特征提取能力以及残差连接和归一化的稳定性,实现了对序列数据的快速而准确的处理。

2025-04-28 15:24:46 1054

原创 基于Jamba模型的天气预测实战

换言之,在样本之间,随着时间的推移,是存在相互影响的。然而,传统的算法往往只能捕捉到样本特征与标签之间的关系,即列与列之间的联系,而无法把握样本与样本之间的关联,也就是行与行之间的联系。当然,从训练集上的结果来看,此时可能还没有充分完成特征的训练,模型仍旧除于“欠拟合”状态,还需要继续训练,这一点有兴趣的读者可以继续尝试完成。对于天气预测模型的实现,我们将使用Jamba作为计算核心完成预测模型,而在输入的部分,由于输入的是一个1D数据,首先需要对其维度进行调整,整理成一个新的2D向量,从而进行后续的计算。

2025-04-27 21:56:27 753

原创 OpenCV彩色图像分割

HSV是一种比较直观的颜色模型,所以在许多图像编辑工具中应用比较广泛,这个模型中颜色的参数分别是:色调(H, Hue)、饱和度(S, Saturation)、明度(V, Value)。饱和度高,颜色则深而艳。对于单通道图像,如果一幅灰度图像的某个像素的灰度值在指定的高、低阈值范围之内,则在dst图像中令该像素值为255,否则令其为0,这样就生成了一幅二值化的输出图像。HSV(Hue、Saturation、Value的首字母,分别表示颜色的色相、饱和度、强度)色彩空间是一种类似于RGB的颜色表示方式。

2025-04-27 21:43:15 1140

原创 基于时间序列的温度预测实战

由于循环神经网络(RNN)架构的特殊性,特别适合处理时间序列数据,因此被较多地应用于时间序列预测任务。RNN能够捕捉序列中的时间依赖关系,通过隐藏状态在序列的时间步之间传递信息,使得模型能够根据历史数据来预测未来的趋势或结果,比如大气旋涡的预测如图10-1所示。图10-1 大气旋涡在时间序列预测中,RNN可以学习数据中的周期性模式、趋势以及异常值等特征,并根据这些特征进行准确的预测。例如,在金融领域,RNN可以用于股票价格预测、交易量预测等;在气象领域,RNN可以用于气温、降雨量等气象指标的预测;

2025-04-24 13:55:51 1446 1

原创 MongoDB Compass可视化工具

MongoDB Compass是一种可视化工具,用于管理和查询MongoDB数据库。它提供了一个直观的图形用户界面,使用户能够轻松地创建、修改和查询MongoDB集合中的文档。Compass还可以帮助用户理解数据模式、性能分析以及创建索引等。通过Compass,用户可以简化数据处理流程、剖析性能问题、优化查询等。

2025-04-24 13:49:02 977

原创 基于Mamba的拼音汉字转换模型

在这个过程中,模型作为编码器,能够分别对序列中的个体以及整体进行编码。其次是拼音编号,这里使用的是汉语拼音,与真实的拼音标注不同的是,去除了拼音原始标注,使用数字1、2、3、4替代,分别代表当前读音的第一声到第四声,这点请读者注意。在这里,我们使用Mamba架构的编码器完成模型的设计,在具体使用时,可以采用在第5章设计完成的Mamba模型进行模型的整理。首先进行数据集的准备和处理,在前面注意力章节的讲解中,我们已经遇到了拼音汉字数据集,本节将详细介绍这个数据集及其具体的处理方法。

2025-04-23 11:02:57 776

原创 OpenCV图像轮廓示例

比如,确定一个轮廓是某个轮廓的子轮廓,或者是某个轮廓的父轮廓。二值化处理后,就可以通过findContours来查找轮廓了,找到轮廓后,我们通过一个循环来计算每个轮廓的面积,并调用函数drawContours绘制轮廓。需要注意,轮廓的层次结构是由参数mode决定的。值得注意的是,图像轮廓指的是图像中连续的像素边界,这些边界通常代表了图像中的物体或者物体的边缘。现在图17-6的背景是白色,手是黑色,那相当于白色区域是要找的物体,黑色区域边缘和图片边缘是白色区域的轮廓,而且这两个轮廓是分离的,因此轮廓是2个。

2025-04-23 10:56:58 1136

原创 Mamba的经典文本生成实战

例如,可以通过滚动循环的方式,从起始符开始,不断将已预测的内容与下一个字符的预测结果进行黏合,逐步生成并展示整段文字。在模型主体部分,我们采用的是与拼音汉字转换模型相同的主体结构,这也是经典的生成模型架构,其目标是根据输入的前一个(一般是多个)Token输出下一个Token,也就是next token预测。特别需要注意,对于输出结果来说,当使用经过训练的Mamba模型进行下一个真实文本预测时,相对于我们之前学习的编码器文本输出格式,输出的内容可能并没有相互关联,如图8-3所示。

2025-04-22 20:42:17 1104 1

原创 OpenCV物体计数示例

color表示文本字体颜色,设置三通道的元组BGR,比如(255,0,0),常见颜色取值如下:红色(0, 0, 255)、绿色(0, 128, 0)、蓝色(255, 0, 0)、黄色(0, 255, 255)、紫色(128, 0, 128)、橙色(0, 165, 255)、白色(255, 255, 255)、黑色(0, 0, 0)、灰色(128, 128, 128)。然后显示二值化后图像。在机器视觉中,有时需要对产品进行检测和计数,比如,网购的维生素片,有时候忘了今天有没有吃过,就想对瓶子里的药片计数。

2025-04-22 20:37:28 1039

原创 基于双向VisionMamba的模块讲解

假设输入的图像大小为224×224,我们将图像切成一个个固定大小为16×16的方块,每一个小方块就是一个patch,那么每幅图像中patch的个数为(224×224)/(16×16) = 196个。具体来看,如果输入图片的大小为28×28×1,这是一个单通道的灰度图,则PatchEmbedding将图片分为固定大小的patch,patch大小为4×4,则每幅图像会生成28×28/4×4=49个patch,这个数值可以作为映射后的序列长度,值为49,而每个patch的大小是4×4×1=16。

2025-04-21 09:34:05 964

原创 OpenCV图像上加数字水印示例

(2)不可感知性:不可感知包含两方面的意思,一个指视觉上的不可感知性(对听觉也是同样的要求),即因嵌入水印导致图像的变化对观察者的视觉系统来讲应该是不可察觉的,最理想的情况是水印图像与原始图像在视觉上一模一样,这是绝大多数水印算法所应达到的要求;最低有效位信息隐藏指的是,将一个需要隐藏的二值图像信息嵌入载体图像的最低有效位,即将载体图像的最低有效位层替换为当前需要隐藏的二值图像,从而实现将二值图像隐藏的目的。由于二值图像处于载体图像的最低有效位上,所以对于载体图像的影响非常不明显,其具有较高的隐蔽性。

2025-04-21 09:20:17 667

原创 DeepSeek智能客服的设计与基本实现

"category": "智能手机和配件","warranty": "1年","5000mAh电池","无线充电","与SmartX ProPhone兼容"],"description": "带有内置电池的保护壳,可延长使用时间。",},"category": "智能手机和配件","warranty": "1年","4.7英寸显示屏","64GB存储","8MP相机","4G"],"description": "一款紧凑且价格实惠的智能手机,适用于基本任务。",},

2025-04-18 12:15:10 1130

原创 OpenCV图像加密和解密

这个密钥不但用于加密,也用于解密,并且加密时候的密钥数据和解密时候都密钥数据要一致,而且平时要保存好,不能让第三方人知道,这种加解密方式成为对称加解密。比如有两个数198和219,198的二进制形式是1100 0110,219的二进制形式是1101 1011,它们异或后得到的二进制形式是0001 1101,化为十进制数为29。最后,使用imshow()函数显示原始图像、密钥数据(图像)、加密后的图像和解密后的图像。(3)任何数(0或1)与数值1异或,结果变为另外一个数,即0变1,1变0。

2025-04-18 11:16:33 966 1

原创 使用预训练模型的视频分类

torchvision是PyTorch的一个图形图像库,专门服务于PyTorch深度学习框架,用于构建计算机视觉模型。它提供了丰富的功能和工具,帮助开发人员和研究人员轻松处理图像数据,从而加速计算机视觉应用的开发和部署。在torchvision库中,有几个核心组件值得一提。首先是torchvision.datasets,这个模块包含了许多加载数据的函数以及常用的数据集接口,如MNIST、CIFAR10、ImageNet等,使得数据准备变得简单快捷。

2025-04-17 18:39:20 1230

原创 OpenCV颜色变换cvtColor

我们生活中看到的大多数彩色图片都是RGB类型的,但是在进行图像处理时需要用到灰度图、二值图、HSV(六角锥体模型,这个模型中颜色的参数分别是色调H、饱和度S、明度V)、HSI等颜色制式,对此OpenCV提供了cvtColor()函数来实现这些功能,这个函数用来进行颜色空间的转换。随着OpenCV版本的升级,对于颜色空间种类的支持也越来越多,因此涉及不同颜色空间之间的转换,比如RGB和灰度的互转、RGB和HSV的互转等。因此,对于24位颜色图像来说,前8位是蓝色,中间8位是绿色,最后8位是红色。

2025-04-17 18:34:13 589

原创 DeepSeek大模型微调技术PEFT与LoRA详解

DeepSeek在文本生成、信息检索和智能问答等多个领域都展现出了令人瞩目的性能,这得益于其精心设计的初始训练过程。然而,不容忽视的是,尽管DeepSeek的架构设计能够在一定程度上减少训练成本,但要从零开始训练一个特定模型,仍然需要巨大的计算资源和庞大的数据集,这对于普通人来说无疑是一个沉重的负担。这种情况也使得一些研究人员难以复现和验证之前的研究成果,从而影响了科研的进展和可信度。

2025-04-16 13:43:00 942

原创 OpenCV数组的操作

参数minVal指向返回的最小值的指针,如果传NULL,就表示不要求最小值;minLoc指向返回最小值的位置(2d情况下),如果传NULL,就表示不要求;maxLoc指向返回最小值的位置(2d情况下),如果传NULL,就表示不要求;全局函数minMaxLoc用于寻找数组中的最大值和最小值及其位置,该极值检测遍历整个矩阵,当掩码部位空时,遍历指定的特殊区域。注意,多通道在使用minMaxLoc函数时不能给出其最大值和最小值坐标,因为每个像素点其实有多个坐标,所以无法给出。这里的数组不是普通意义上的数组。

2025-04-16 13:35:08 612

原创 旅游特种兵迪士尼大作战:DeepSeek高精准路径优化

随着假期的脚步日渐临近,环球影城等备受瞩目的主题游乐场,已然成为大人与孩子们心中不可或缺的节日狂欢圣地。然而,随之而来的庞大客流,却总让无数游客在欢乐的门槛前止步,那长长的排队队伍,无疑成为了他们畅享假日时光的最大阻碍。游乐场内项目琳琅满目,每一个都散发着诱人的魅力,但时间却似乎总是不够用。如何在这人潮汹涌、时间紧迫的环境下,巧妙规划行程,确保每一次的游玩都能获得最大的快乐回报,这无疑是对每一位追求极限旅游体验的“特种兵”游客的严峻考验。是选择那些刺激惊险的过山车,还是沉浸于梦幻般的童话世界?

2025-04-15 09:31:07 893

基于Transformer模型的谣言检测系统

基于Transformer模型的谣言检测系统,代码实现,数据文件,供读者个人学习使用。

2025-02-04

Ambari+HDP+HDP-UTILS.rar

Ambari-2.7.5+HDP-GPL-2.6.4.0+HDP-UTILS-1.1.0.22

2021-03-28

OpenAL v2.1.rar

OPENAL是一个音效API,负责系统和声卡之间的沟通。

2020-05-18

java web设计模式

java web设计模式代码

2012-12-26

PHP+MySQL动态网站开发全程实例

《PHP+MySQL动态网站开发全程实例》随书光盘。 下载有问题,请邮件联系booksaga@163.com, 邮件标题为“求PHP+MySQL代码”

2012-11-07

Android 4.X从入门到精通

我的资源都不大,如果有下载不了的情况, 请联系邮箱booksaga@163.com, 我有邮件发送好了,谢谢。

2012-10-30

《Excel VBA从入门到实战》示例文件

《Excel VBA从入门到实战》示例文件

2012-08-06

《UML基础、建模与设计实战》课件和例子

《UML基础、建模与设计实战》课件和例子

2012-07-22

html5+css3+JS代码

《精通html5+css3+JavaScript页面设计》代码

2012-05-22

PowerDesigner15建模文件例子

《PowerDesigner 15 系统分析与建模实战》一书的建模文件

2012-05-15

软件公司研发部部门职责和业务流程

软件公司研发部部门职责和业务流程软件公司研发部部门职责和业务流程

2009-06-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除