【WFAS】《Wild Face Anti-Spoofing Challenge 2023: Benchmark and Results》

在这里插入图片描述

Wang D, Guo J, Shao Q, et al. Wild face anti-spoofing challenge 2023: Benchmark and results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 6380-6391.

CVPRW-2023

数据集地址:https://github.com/deepinsight/insightface/tree/master/challenges/cvpr23-fas-wild



1、Background and Motivation

背景

(1)人脸识别技术的广泛应用:

近年来,人脸识别技术已经在各个领域得到了广泛应用,如门禁控制、手机解锁、数字支付和考勤系统等。

(2)人脸识别系统的安全风险:

尽管人脸识别技术带来了便利,但这些系统也面临着显著的安全风险。例如,考勤系统可能被照片欺骗,手机解锁系统可能被攻击,数字支付系统可能被身份盗用。

(3)人脸反欺诈(FAS)技术的重要性:

人脸反欺诈(FAS)技术作为自动人脸识别系统的重要组成部分,对于保障这些系统的完整性至关重要。

(4)现有FAS数据集的局限性:

尽管FAS技术取得了显著进展,但现有方法在真实世界应用中的泛化能力仍然有限。这主要归因于公开可用的FAS数据集数量有限且缺乏多样性,导致训练时过拟合或测试时饱和。


动机

(1)解决现有数据集的局限性:

现有的FAS数据集大多包含少于2000个受试者,且样本大多在受控环境中收集,缺乏场景多样性。本文旨在通过引入一个大规模、多样化的FAS数据集来解决这些问题。

a lack of scenario richness

significant sample homogenization.

(2)引入Wild Face Anti-Spoofing (WFAS) 数据集:

WFAS数据集是在无约束环境下收集的大规模、多样化FAS数据集,包含321,751个欺诈受试者的853,729张图像和148,169个真实受试者的529,571张图像。该数据集通过互联网收集欺诈样本,涵盖了广泛的场景和各种商业传感器,包括17种呈现攻击(PAs),涵盖了2D和3D形式。

variety of scenarios and commercial sensors

(3)推动FAS技术的发展:

通过利用 WFAS 数据集和 Protocol 1(Known-Type Protocol 已知类型),本文在CVPR 2023研讨会上举办了 Wild Face Anti-Spoofing Challenge e at the CVPR2023 workshop。此外,还使用 Protocol 1 和 Protocol 2(未知类型 Unknown-Type Protocol)对代表性方法进行了细致评估。通过深入分析挑战结果和基准基线,本文提供了深入的分析,并提出了未来研究的潜在途径。

2、Related Work

  • Face Anti-Spoofing Datasets

  • Face Anti-Spoofing Methods

3、Advantages / Contributions

  • 提出了大规模、多样化的 WFAS 数据集
  • 基于 WFAS 提出了两种测试协议,并基于协议1 举办了 Wild Face Anti-Spoofing Challenge
  • 解读分析了前三名的技术方案,给出了未来展望

4、Methods

4.1、Face Anti-Spoofing Methods

1) classification supervision

2) auxiliary pixel-wise supervision

Pseudo depth labels

Pseudo reflection maps

binary mask labels

3) generative pixel-wise supervision

Generative pixel-wise supervision is visually insightful and more interpretable.

spoof noise modeling or spoof cue generation

4.2、Wild Face Anti-Spoofing Dataset

Data Construction

obtain from the internet under a specific creative commons license,

Live Data

All live faces were clustered using RetinaFace(人脸检测器) and ArcFace(人脸识别器),resulting in a total of 529,571 images from 148,169 live subjects.

十几万的 id,还是挺丰富的

Spoof Data

were sourced from the internet

在这里插入图片描述

tablet——平板

Garage Kits——“手办”,特指需要玩家自行组装、涂装的树脂模型套件

在这里插入图片描述

a significant breakthrough in FAS data quantity and diversity.

training, development, and testing subsets with an approximate ratio of 4:1:5

5、Experimental Settings

5.1、Evaluation Metrics

standardized ISO/IEC 301073 metrics

在这里插入图片描述
Attack Presentation Classification Error Rate

Bonafide Presentation Classification Error Rate

Average Classification Error Rate

5.2、Evaluation Protocols

Known-Type Protocol——all PA types for training, development, and testing(训练、验证、测试集都包含所有的 PAs)

Unknown-Type Protocol——训练和测试的 PAs 不一样

5.3、Baselines

to eliminate the influence of arbitrary and unfaithful cues (e.g., screen bezel) on spoofing patterns,作者仅用 face 的 bbox 区域作为输入

在这里插入图片描述

不同颜色的框表示不同类型的方法, 依次为 classification supervision、auxiliary pixel-wise supervision、generative pixel-wise supervision

LGSC 的泛化性能不错,auxiliary pixel-wise supervision 方法不及预期

5.4、Challenge Results

Based on our dataset and Protocol 1 (Known-Type), we hosted the Wild Face Anti-Spoofing Challenge at the CVPR 2023 workshop.

The face scale was randomly set to between 1.0 and 1.2 times the side length, making it more suitable for real-world application scenarios

在这里插入图片描述
Netease 是网易


看看前三名的实现方案

(1)China Telecom

self-supervised stage and supervised learning stage

在这里插入图片描述

The teacher network’s parameters are updated with an exponential moving average (EMA) of the student parameters

老师网络和学生网络结构一样

In the second stage, self-supervised weights are used to initialize ViT for supervised learning

(2)MeiTuan

在这里插入图片描述

用 MoCoV2 自监督训练出 SwinV2-huge 和 SwinV2-tiny 两个网络,然后在活检数据集上微调,接着用蒸馏学习训练两个网络

(3)NetEase

在这里插入图片描述
先用 convnext 来 train, train 完预测一波得到 soft label

再用 maxvit 配合组合 loss 来学 soft labels

也算是蒸馏了,老师和学生的输入不同


6、Conclusion(own) / Future work

  • diversity
  • screen bezel
  • In comparison to face recognition technology, face anti-spoofing remains an unresolved issue in face recognition systems
  • the top-3 solutions all utilized the Transformer
  • we have yet to see the emergence of new methods with better interpretability for the FAS task

更多论文解读,请参考 【Paper Reading】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值