斐波那契数列区间和

     同事去某团面试,聊到算法时问了“计算斐波那契数列下标从i到j的和”?

 斐波那契数列特点是当前值等于前2位的和, 例如0、1、1、2、3、5、8、13、21等等。

 构造斐波那契数列可以使用递归或者非递归的方法。 设想使用递归方式计算下标i、下标j的值, 假设下标i比较小, 那么计算下标j的值时必然重复递归了i, 所以递归方法性能比较差。

     考虑使用非递归方式实现,尽量减少时间和空间复杂度。 

 思路: 使用for循环计算每个下标的值, 并在循环内计算和(省去再次for循环计算和的步骤)。 因为做了一个for循环,所以时间复杂度O(n); 因为new了数组array,所以空间复杂度O(n)。 

    /**
     * 计算斐波那契数列第i位到第j位的和
     * @param i,低位下标
     * @param j,高位下标
     * @return 如果参数非法则返回-1, 如果参数合法则返回和
     */
    private static int fabonacciSum(int i, int j) {
        if (i > j || i < 0 || j < 0) {
            return -1;
        }

        if (j < 2) {
            return j;
        }

        int[] array = new int[j+1];
        int total;
        if (i < 2) {    //下面的for循环是从下标2开始的
            total = 1;
        } else {
            total = 0;
        }

        array[0] = 0;
        array[1] = 1;
        for (int k = 2; k <= j; k++) {
            array[k] = array[k-1] + array[k-2];

            if (k >= i) {
                total += array[k];
            }
        }

        return total;
    }


    public static void main(String[] args) throws Exception {

        int result = fabonacciSum(1, 2);
        int result1 = fabonacciSum(5, 8);

        System.out.println(result + ", " + result1);

    }

        感觉这是最优算法, 欢迎讨论~~~~



  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值