人工智能学习专栏
文章平均质量分 87
编程千纸鹤
从事开发多年,c,c++,java,php均有涉猎,目前主要从事java开发及架构设计,希望以技术结交更多的朋友
展开
-
基于大数据的智能家居销量数据分析
该系统主要分为前台和后台两个部分。前台面向用户,提供注册登录、查看智能家居信息、获取资讯等服务。用户可以通过系统了解到各类智能家居产品的详细信息,包括品牌、型号、价格、功能等,方便用户进行比较和选择。同时,系统还提供智能家居资讯服务,让用户随时掌握行业动态和产品信息。原创 2024-10-29 19:09:02 · 811 阅读 · 0 评论 -
2025大数据选题|基于Hadoop的物品租赁系统的设计与实现
该系统基于Hadoop平台,利用Java语言、MySQL数据库,结合目前流行的 B/S架构,将物品租赁管理的各个方面都集中到数据库中,以便于用户的需要。在确保系统稳定的前提下,能够实现多功能模块的设计和应用。该系统由管理员功能模块和用户模块组成。不同角色的准入制度是有严格区别的。各功能模块的设计也便于以后的系统升级和维护。该系统采用了软件组件化、精化体系结构、分离逻辑和数据等方法。原创 2024-10-28 11:17:33 · 1155 阅读 · 0 评论 -
基于大数据的银行信用卡用户的数仓系统的设计与实现
主要针对系统的设计,描述,实现和分析与测试方面来表明开发的过程。开发中使用了 django框架和MySql数据库技术搭建系统的整体架构。利用这些技术结合实际需求开发了具有个人中心、用户管理、信用卡数据管理、商品数据管理、商品信息管理、系统管理、订单管理等功能的系统,最后对系统进行相应的测试,测试系统有无存在问题以及测试用户权限来优化系统,最后系统达到预期目标。原创 2024-09-24 14:46:52 · 1331 阅读 · 0 评论 -
大数据项目|基于大数据的学习资源推送系统的设计与实现
本文首先实现了学习资源推送管理技术的发展,随后依照传统的软件开发流程,最先为系统挑选适用的语言和软件开发平台,依据需求分析开展控制模块制作和数据库查询构造设计,依据系统整体功能模块的设计,制作系统的功能模块图、流程表和E-R图。其次进行设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。原创 2024-09-21 08:51:30 · 417 阅读 · 0 评论 -
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
循环神经网络(Recurrent Neural Networks,简称RNNs)是一类用于处理序列数据的神经网络。与传统的神经网络(如全连接神经网络或卷积神经网络)不同,RNNs具有记忆能力,能够捕获序列数据中的时间依赖性和模式。这使得RNNs在自然语言处理、语音识别、时间序列预测等领域具有广泛的应用。原创 2024-06-12 11:21:04 · 1292 阅读 · 6 评论 -
深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
卷积神经网络(Convolutional Neural Networks, CNN)是一种包含卷积计算且具有深度结构的前馈神经网络,是深度学习(deep learning)的代表算法之一。原创 2024-06-11 10:37:18 · 1244 阅读 · 3 评论 -
深度学习-【完整代码+数据集】基于全连接神经网络空气质量回归预测案例实现
作者简介:Java、前端、Python开发多年,做过高程,项目经理,架构师主要内容:Java项目开发、Python项目开发、大学数据和AI项目开发、单片机项目设计、面试技术整理、最新技术分享。原创 2024-06-10 11:03:29 · 196 阅读 · 1 评论 -
深度学习-【完整代码+数据集】使用全连接神经网络完成乳腺癌检测
全连接神经网络也被称为多层感知器(Multilayer Perceptron,MLP)。在这种网络中,每个神经元与前一层和后一层的所有神经元相连接,形成一个密集的连接结构。它能够学习输入数据的复杂特征,并进行分类、回归等任务。原创 2024-06-10 09:10:33 · 411 阅读 · 4 评论 -
深度学习--【完整代码+数据集】线性回归数据模型构建案例
梯度下降法(Gradient Descent)是一个一阶最优化算法,也称为最速下降法。它通过迭代的方式,在函数上当前点沿梯度(或近似梯度)的反方向移动一定的步长,以寻找函数的局部极小值。原创 2024-06-08 12:35:43 · 97 阅读 · 6 评论 -
深度学习-【完整代码+数据集】逻辑回归预测乳腺癌检测案例
在机器学习有监督学习中大致可以分为两大任务,一种是回归任务,一种是分类任务;那么这两种任务的区别是什么呢?按照较官方些的说法,输入变量与输出变量均为连续变量的预测问题是回归问题,输出变量为有限个离散变量的预测问题成为分类问题。原创 2024-06-08 22:41:43 · 409 阅读 · 1 评论