二叉堆
二叉堆的基本样子就是二叉树(一般为完全二叉树)
但由于我用c写的二叉堆一直出错,所以本次题解我用另一个简单的方法解决的。
这本是一道二叉树题!!!!!!
合并果子
在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。
达达决定把所有的果子合成一堆。
每一次合并,达达可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。
可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。
达达在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以达达在合并果子时要尽可能地节省体力。
假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使达达耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。
可以先将1、2堆合并,新堆数目为3,耗费体力为3。
接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以达达总共耗费体力=3+12=15。
可以证明15为最小的体力耗费值。
输入格式
输入包括两行,第一行是一个整数n,表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数aiai是第i种果子的数目。
输出格式
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于231。
输入样例:
3
1 2 9
输出样例:
15
#include <stdio.h>
#define ll long long
int a[30000];
int book[20005];
main()
{
int n,i,j,x,y,s,z;
ll ans;
scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%d",&z);
book[z]++;
}
i=0;
j=0;
while(i<=20000)
{
while(book[i]>0)
{
a[j++]=i;
book[i]--;
}
i++;
} //利用桶排节省时间
ans=0,s=n,j=n,i=0;
while(j-i>1)
{
x=a[i];
y=a[i+1];
i=i+2;
ans+=x+y;
a[j]=x+y;//每次提出来两个最小的值,把他们合并成新的一推放入数组
int x1,y1,t1;
x1=i,y1=j;
while(y1>x1)
{
if(a[y1]<a[y1-1])
{
t1=a[y1];
a[y1]=a[y1-1];
a[y1-1]=t1;
}
y1--;
}//找到他的位置//保持数组有序。
j++;
}
printf("%lld",ans);
}
这道题的思路就是每次将最小的两堆合并成新的一堆放入数组中,再进行重复操作即可。共进行n-1次操作。
这题等我用二叉堆代码写出来再补充