引入
相信大家看到这篇文章的时候,已经踩过我之前的三篇文章了。下面我们来介绍一下我们的高精乘。高精乘共有两种情况,就是高精乘高精和高精乘低精(阶乘和)。我们分别来介绍。
高精乘低精
情景
当我们拿到一个高精数,要去乘一个低精数,例如 1111111111111111111111111111111 * 2 = ?
理论解释
这种情况,不是说计算机无法算,是因为这个数没法存啊。越到后面,每增加一位,所需要增加的空间消耗量都会大幅增加。所以我们就要引入高精数,这样才能够去存储数字(当然,数论中如同余定义可以在有些题目解决这个问题)。
高精乘低精,其实原理很简单,就是高精数的每一位都去乘一遍低精数,然后从个位开始往高位进位。
代码
#include<iostream>
#include<string>
using namespace std;
void template1()
{
	string s1;
	int num1[1001],num2,len;
	cin>>s1>>num2;
	len=s1.size();
	for(int i=1;i<=len;i++) num1[i]=s1[len-i]-48;
	int x=0;
	for(int i=1;i<=len;i++)
	{
		num1[i]*=num2;
	}
	for(int i=1;i<=len;i++)
	{
		num1[i]=num1[i]+x;
		x=num1[i]/10;
		num1[i]%=10;
	}
	while(x) num1[++len]=x%10,x/=10;
	for(int i=len;i>=1;i--) cout<<num1[i];
} 
int main()
{
	template1();
	return 0;
} 
由于逻辑上难度不是太高,就不再去详细拆分步骤去讲了。
重要的一个难点就是最后我们乘完以后不是

                  
                  
                  
                  
本文介绍了高精度乘法的两种情况:高精度数乘以低精度数和高精度数乘以高精度数。对于高精乘低精,通过逐位相乘并进位实现;高精乘高精则使用嵌套循环,根据核心公式计算。文章详细讲解了理论和代码实现,并提供了完整的高精乘高精代码。
          
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					2280
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            