动态规划求解力扣第7题 爬楼梯

前言

记录一下刷题历程 力扣第7题 爬楼梯


爬楼梯

原题目:假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶
    示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

分析

我们画一棵决策树
在这里插入图片描述
在图里我们可以清晰的看出来当阶梯为4时有f(4)=f(3)+f(2) 所以当楼梯为n阶时有f(n)=f(n-1)+f(n-2)种方法,使用动态规划中自下而上的迭代就可以得出正确答案

代码如下:

class Solution {
public:
    int climbStairs(int n) {
        vector<int> dp(n + 1, 0); // 创建一个长度为 n+1 的数组 dp,初始化为0,用于存储每级台阶的方法数
        dp[0] = 1; // 初始条件:到达第 0 级台阶的方法数为 1(不需要走)
        dp[1] = 1; // 初始条件:到达第 1 级台阶的方法数为 1(一种方式:一步走到)
        
        // 从第 2 级台阶开始计算到达每级台阶的方法数
        for (int i = 2; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2]; // 状态转移方程:到达第 i 级台阶的方法数 = 到达第 i-1 级台阶的方法数 + 到达第 i-2 级台阶的方法数
        }
        
        return dp[n]; // 返回到达第 n 级台阶的方法数
    }
};

解释注释

1.vector dp(n + 1, 0);

创建一个名为 dp 的整型向量,长度为 n + 1,并将所有元素初始化为 0。dp[i] 表示到达第 i 级台阶的方法数。
初始条件设置:

2.dp[i] = dp[i - 1] + dp[i - 2];

对于每级台阶 i >= 2,到达第 i 级台阶的方法数等于到达第 i-1 级台阶的方法数加上到达第 i-2 级台阶的方法数。
这是因为,要到达第 i 级台阶,可以从第 i-1 级台阶走一步到达,或者从第 i-2 级台阶走两步到达。

3.循环计算:

for (int i = 2; i <= n; i++) { … }
从第 2 级台阶开始循环计算到达每级台阶的方法数,直到第 n 级台阶。

时间复杂度

使用动态规划的方法解决了爬楼梯问题,通过定义状态和状态转移方程来求解到达每级台阶的方法数。需要遍历从 2 到 n 的所有台阶,每级台阶的计算都是常数时间复杂度的操作,因此总体时间复杂度为 O(n)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值