方法1:自底向上用“动态规划”选择
找出最优解的性质,并刻划其结构特征。 递归地定义最优值。 以自底向上的方式计算出最优值。 根据计算最优值时得到的信息,构造最优解
问题描述:给定一个由n行数字构成的数字三角形,设计一个算法,计算出从三角形的顶至底的一条路径,是路径的数字总和最大。
算法设计:第一行是数字的、三角形的行数n,接下来n行是数字三角形各行中的数字,所有数字在0-99之间
输出结果:
input output
5 30
7
2 3
8 1 0
2 7 4 4
4 5 2 6 5
代码:
#include <iostream>
using namespace std;
int MaxSum(int i,int j);//求第i行第j列到底边的最大值
int maxs(int x,int y);//返回最大值
int D[101][101];//第i行第j列的数字
int n;//三角形列数
int main(){
cin >> n;
for(int i=1;i<=n;++i)
for(int j=1;j<=i;++j)
cin >> D[i][j];
cout << MaxSum(1,1) << endl;
return 0;
}
int maxs(int x,int y){
return (x > y?x: y);
}
int MaxSum(int i,int j){
if(i == n)
return D[i][j];
int x = MaxSum(i+1,j);
int y = MaxSum(i+1,j+1);
return maxs(x,y) + D[i][j];
}
运行截图: