算法分析与设计C++ 4:过河卒

总时间限制: 1000ms 内存限制: 128000kB

描述

棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上的某一点有一个对方的马(如C点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点,如图3-1中的C点和P1,……,P8,卒不能通过对方马的控制点。棋盘用坐标表示,A点(0,0)、B点(n, m) (n,m为不超过20的整数),同样马的位置坐标是需要给出的,C≠A且C≠B。现在要求你计算出卒从A点能够到达B点的路径的条数。

算法分析与设计C++ 4:过河卒

 

输入B点的坐标(n,m)以及对方马的坐标(X,Y)输出从A点能够到达B点的路径的条数。

样例输入6 6 3 2

样例输出17

来源noip普及组2002

#include<iostream>
using namespace std;
long long fun(long long n,long long m, long long x, long long y){
 long long a[21][21];
 
 int dx[9] = {0, 2, 2, 1, 1, -2, -2, -1, -1};
 int dy[9] = {0, 1, -1, 2, -2, 1, -1, 2, -2};
 bool g1[21][21];
 fill(g1[0],g1[0]+21*21,true);
 for (int i=0; i<=8; i++){
 int xx=x+dx[i],yy=y+dy[i];
 if (xx>=0 && xx<=n && yy>=0 && yy<=m){
 g1[xx][yy]=false;
 } 
 
 }
 // for(int g=0; g<=n; g++)
 // {
 // for(int h=0; h<=m; h++)
 // {
 // cout<<g1[g][h]<<" "; 
 // }
 // cout<<endl;
 // }
 fill(a[0],a[0]+21*21,0);
 a[0][0]=1LL;
 
 for(int g=0; g<=n; g++)
 {
 for(int h=0;h<=m;h++)
 {
 if(g1[g][h]){
 if(g==0&&h>=1){
 a[0][h]=a[g][h-1]; 
 }
 if(h==0&&g>=1){
 a[g][0]=a[g-1][h]; 
 }
 if(g>=1&&h>=1){ 
 a[g][h] = a[g-1][h]+a[g][h-1];
 } 
 }
 }
 }
 // cout<<endl;
 // for(int g=0; g<=n; g++)
 // {
 // for(int h=0;h<=m;h++)
 // {
 // cout<<"("<<g<<","<<h<<"):"<<a[g][h]<<" "; 
 // }
 // cout<<endl;
 // }
 return a[n][m];
}
int main(){
 long long n,m,x,y;
 cin>>n>>m>>x>>y;
 cout<<fun(n,m,x,y)<<endl;
 return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值