计算机视觉:轮廓检测与跟踪

本文介绍了计算机视觉中的轮廓检测与跟踪任务,包括边缘检测(如Canny算法)、二值化后的连通区域分析,以及轮廓跟踪的特征匹配和运动预测方法。并提供了相关Python代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算机视觉:轮廓检测与跟踪

在计算机视觉领域,轮廓检测与跟踪是一项重要的任务,旨在从图像或视频中提取出对象的轮廓,并跟随对象在连续帧中的变化。本文将介绍轮廓检测与跟踪的基本概念和常用方法,并提供相应的源代码示例。

一、轮廓检测

轮廓检测是指从图像中提取出对象的边界轮廓的过程。常用的轮廓检测方法包括边缘检测和二值化后的连通区域分析。

  1. 边缘检测

边缘检测是一种常用的轮廓检测方法,它通过寻找图像中灰度变化较大的地方来定位对象的边界。其中,Canny 边缘检测算法是一种经典的方法,它包括以下步骤:

import cv2

# 读取图像
image = cv2.imread('image.jpg', 0)<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值