深度学习是一种机器学习的方法,它通过构建和训练多层神经网络来实现数据的自动化学习和模式识别。神经网络是深度学习的核心组件,它模拟了生物神经系统中神经元之间的连接和信息传递方式。本文将详细介绍深度学习与神经网络之间的紧密关系,并提供相应的源代码示例。
深度学习是一种从数据中自动学习特征表示的方法,它通过构建多层神经网络来实现。神经网络是由多个神经元组成的网络结构,每个神经元接收来自前一层神经元的输入,并通过一个激活函数将输入转换为输出。神经网络的层数决定了它的深度,因此深度学习得名于此。
下面是一个简单的神经网络示例,用于解决二分类问题:
import numpy as np
# 定义神经网络的激活函数
def sigmoid(x):
return