ASAPool: 基于PyTorch和PyG的图分类方法实现

147 篇文章 36 订阅 ¥59.90 ¥99.00
本文详细介绍了如何使用PyTorch和PyG实现ASAPool,一种注意力机制的图池化方法,用于图分类任务。ASAPool通过选择具有最大注意力权重的节点进行特征聚合,提高图分类效果。文章涵盖了模型构建、训练和评估的完整流程。
摘要由CSDN通过智能技术生成

在本文中,我们将介绍如何使用PyTorch和PyG(PyTorch Geometric)库实现ASAPool(Attention-Set-Aggregate Pooling)方法,用于图分类任务。ASAPool是一种基于注意力机制的图池化操作,它能够有效地将图中的节点信息聚合成图级别的表示,并用于分类任务。

首先,我们将导入所需的库和模块:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import gl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值