- 博客(476)
- 收藏
- 关注
原创 Something for 24OI
我80%以上的做题都是在洛谷进行的(包括CF的remotejudge),当时主要是喜欢洛谷对做题记录可视化带来的成就感,现在看来,洛谷可能仍是我心中国内最好的做题平台(对于非顶尖选手而言),大量高质量的中文题解是其独特的优势。大考时的紧张是很正常的,紧张也不见得就考的不好。一个细节,我个人觉得利用碎片时间去机房做题是一个不太划得来的行为,因为OI做题是需要深度思考,需要整块时间投入的,花二三十分钟去机房常常会一无所获,还会产生挫败感,不如用这些时间写作业,回家后就可以有更多整块的OI时间。
2024-10-06 16:54:44 359
原创 WSPD:平面最近邻+t-spanner+近似欧氏距离MST(程设实习)
哎呀打字麻烦死了还是贴PPT吧前言感觉这个东西还是有点厉害的。定义构造可以证明这样构造的WSPD大小为 O(nϵ−dlog△)O(n\epsilon^{-d}\log\triangle)O(nϵ−dlog△),△\triangle△ 为值域。平面最近邻构造 ϵ=1\epsilon=1ϵ=1 的WASD,只需对于所有 ∣Ai∣=∣Bi∣=1|A_i|=|B_i|=1∣Ai∣=∣Bi∣=1 的里面的两个点的距离向答案贡献一次即可。代码#include<bits/stdc++.h
2023-03-29 12:46:02 767 2
原创 P5327 [ZJOI2019]语言(线段树合并、生成树)
解析只会扫描线树剖的三只log(悲考虑对每个 uuu 考虑合法的 vvv 的集合,必然是一个联通块。进一步的,观察到这个联通块就是由所有经过 uuu 的路径的端点形成的最小生成树。我们有一个最小生成树的经典结论:最小生成树边权和等于按dfs序排列成圆后邻项距离和除以二,不难发现可以线段树维护。把所有路径做一个树上差分,再结合线段树合并,即可进行求解了。用欧拉序 st 表 O(1)O(1)O(1)求LCA,总复杂度 O((n+m)logn)O((n+m)\log n)O((n+m)logn)代
2022-05-27 11:38:56 146 3
原创 SP422 TRANSP2 - Transposing is Even More Fun(Burnside引理,莫比乌斯反演)
巧妙的Burnside应用
2022-05-19 22:52:06 169
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人