[LeetCode]--172. Factorial Trailing Zeroes

126 篇文章 0 订阅
这篇博客介绍了如何解决LeetCode中的172题,即计算阶乘n!中末尾有多少个零。博主指出,由于2的出现次数远超5,所以零的个数等同于5的因子个数。解决方案在于统计n!中5的幂次,从而确定尾部零的数量。该算法的时间复杂度要求为对数级别。
摘要由CSDN通过智能技术生成

Given an integer n, return the number of trailing zeroes in n!.

Note: Your solution should be in logarithmic time complexity.

Credits:
Special thanks to @ts for adding this problem and creating all test cases.

实在话这个题看似简单其实挺难。我尝试了先求出n!首先会超出int范围,其次如果是double会用科学计数法。并不能精确到那一位,所以只能换个思路了。就是怎么才能在后面产生0。那肯定就是乘以了10。所以就想到分解因子,最小一对(2,5)肯定会产生10。

对n!做质因数分解n!=2x*3y*5z*…

显然0的个数等于min(x,z),并且min(x,z)==z

证明:

对于阶乘而言,也就是1*2*3*…*n
[n/k]代表1~n中能被k整除的个数
那么很显然
[n/2] > [n/5] (左边是逢2增1,右边是逢5增1)
[n/2^2] > [n/5^2] (左边是逢4增1,右边是逢25增1)
……
[n/2^p] > [n/5^p] (左边是逢2^p增1,右边是逢5^p增1)
随着幂次p的上升,出现2^p的概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值