递归
编写递归要决,千万不要用人脑去递和归每一层,正确的做法是找到如何分解为子问题,然后几个子问题的关系是什么。然后翻译成代码。
leetcode17
题目描述:
给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。 给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。 示例: 输入:"23" 输出:["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]. 说明: 尽管上面的答案是按字典序排列的,但是你可以任意选择答案输出的顺序。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/letter-combinations-of-a-phone-number 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 |
解题思路
先说最简单的,对应数字与字符的对应关系,我们可以用数组来记录,下标为代表0到9的数字,值即为每个字符串,由于0和1都没有字符,为了使用方便,还是使用空字符来占用。即可表示为
String[] dict = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
再来说如何组合所有可能性,还不能重复。比如输入23
类比我们人脑来处理的过程就是这样:
先取2的第一个字符与后面每个字符组合,然后再取出3的每个字符与后面组合即可得到所有可能性。
使用递归还求解,需定能定义出来递推公式,可我数学公式基本已经还给老师了,实在是对不起老师呀,还是来想想处理过程吧。
递归需要我们将问题分解为多个子问题。那我们如何分解呢?
刚刚人脑的处理过程就取出数字对应的字符串,然后一个一个的遍历,与之前的字符进行组合,这是递归的处理逻辑,当我们遍历到输入数字最后一个时,就需要将每个数字组合进行记录。这是递归的终止条件。
然后我们此翻译成代码:
解题实现
public class RecurstionSolution {
private static final String[] STAT_CODE = new String[] {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
public List<String> letterCombinations(String digits) {
List<String> result = new ArrayList<>(); if (digits == null || digits.isEmpty()) { return result; }
String inputData = digits.trim(); // 1,将输入的字符转化为数字 int[] dataNum = new int[inputData.length()];
for (int i = 0; i < inputData.length(); i++) { dataNum[i] = inputData.charAt(i) - '0'; }
String dataChar = "";
this.recurstionData(dataNum, 0, result, dataChar); return result; }
/** * 进行递归的求解 * * @param dataNum 输入字符 * @param index 索引号 * @param list 数据集合 * @param dataChar 当前的字符 */ private void recurstionData(int[] dataNum, int index, List<String> list, String dataChar) { // 1,递归的终止条件 if (index == dataNum.length) { list.add(new String(dataChar)); return; }
// 进行递归的求解 for (int i = 0; i < STAT_CODE[dataNum[index]].length(); i++) { dataChar = dataChar + STAT_CODE[dataNum[index]].charAt(i); // 当取出一个字符后继续进行遍历 this.recurstionData(dataNum, index + 1, list, dataChar); // 当遍历完成后,需要删除当前的最后一个字符,以可以与其他进行组合 dataChar = dataChar.substring(0, dataChar.length() - 1); } } } |
leetcod22
题目描述:
22. 括号生成 给出 n 代表生成括号的对数,请你写出一个函数, 使其能够生成所有可能的并且有效的括号组合。
例如,给出 n = 3,生成结果为:
[ "((()))", "(()())", "(())()", "()(())", "()()()" ]
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/generate-parentheses 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 |
解题思路:
这个题目说实话我也做错了,我开始的解题思路是以成对的括号为单位,我想的是在括号的左边 ,右边,还有中间,依次的插入号位,递归这样就可以求解了,但当我实现的时候,我发现,我的思路是错误的,因为当遍历到多层时,这个中间括号已经无法再明确的定义,需要寻找其他解法。
我又来参照了其他的方案,终于理解了这个递归的求解方法:
这个问题的求解可以分为两部分,添加左括号、和添加右括号,添加的个数正好是输入的数字,例如3,就是可以添加3个左括号和3个右括号。
那现在就是如何添加左括号和右括号的问题:
先说左括号,最大左括号不就是输入的数字么,所以需要一个左括号的索引来记录当前是第几个左括号,需要小于最大左括号。添加一个括号即可
当左括号添加了,那右括号嗯,是否和左括号一样,这个还是有点不一样呢,右括号需要与左括号成对出现,就不能出现右括号比左括号还多的情况,这样最大右括号需要小于当前的左括号数了。
递归终止条件是什么呢,当然是当前括号数满足了输入的括号数*2,例如输入3,就是6个,左路输入左右括号数,一样要是6个。现在来翻译成代码吧.
递归代码实现
public class SolutionParthese2 {
public static final String PARENTHESE_LEFT = "("; public static final String PARENTHESE_RIGHT = ")";
public List<String> generateParenthesis(int num) { List<String> result = new ArrayList<>();
if (num == 1) { result.add(PARENTHESE_LEFT + PARENTHESE_RIGHT); return result; }
if (num == 0) { return result; }
this.recurstion(num, 0, 0, result, "");
return result; }
/** * 递归求最大括号的组合 * * @param maxNum 最大索引号 * @param left 左索引号 * @param right 右索引号 * @param resultLst 存储的结果数 * @param data 当前已经得到的括号组合 */ public void recurstion(int maxNum, int left, int right, List<String> resultLst, String data) { // 1,首先写递归的终止条件 if (data.length() == maxNum * 2) { resultLst.add(data); return; }
// 添加左括号 if (left < maxNum) { this.recurstion(maxNum, left + 1, right, resultLst, data + PARENTHESE_LEFT); }
// 添加右括号,右括号,需要小于左括号,否则不对成对了 if (right < left) { this.recurstion(maxNum, left, right + 1, resultLst, data + PARENTHESE_RIGHT); } } } |
leetcode39
题目描述:
39. 组合总和 给定一个无重复元素的数组 candidates 和一个目标数 target , 找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的数字可以无限制重复被选取。
说明:
所有数字(包括 target)都是正整数。 解集不能包含重复的组合。 示例 1:
输入: candidates = [2,3,6,7], target = 7, 所求解集为: [ [7], [2,2,3] ] 示例 2:
输入: candidates = [2,3,5], target = 8, 所求解集为: [ [2,2,2,2], [2,3,3], [3,5] ]
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/combination-sum 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 |
解题思路:
这个是一个求组合的问题,我的求解思路是这样子的,将数组中的每个元素,从当前自己开始,依次与一个元素相加,如果超过了,说明符不合,如果与预期值相同,则记录下来,未到达退出条件则继续递归。为了确保无重复的数据,可使用set来进行存储
编码实现
public class SolutionMySelf {
public List<List<Integer>> combinationSum(int[] inputSrc, int target) {
if (inputSrc == null || inputSrc.length == 0) { return null; }
List<Integer> currList = new ArrayList<>(); Set<List<Integer>> collect = new HashSet<>();
this.recurstion(inputSrc, target, 0, 0, currList, collect);
List<List<Integer>> result = new ArrayList<>(collect);
return result; }
/** * 进行问题的递归求解,对于重复的数据项,即通过起始值来操作,当已经遍历过的数据,将不再遍历。 * * @param inputSrc 输入数组 * @param target 目标值 * @param value 当前的值 * @param startIndex 开始的索引号,小技巧,这样可以避免重复的计算。只需要从当前向后推进即可 * @param collect 当前已经记录的集合 * @param resultList 记录下已经求解的数据集 */ private void recurstion( int[] inputSrc, int target, int value, int startIndex, List<Integer> collect, Set<List<Integer>> resultList) {
// 1,递归的终止条件 if (value == target) { resultList.add(new ArrayList<>(collect)); return; } // 2,超过出说明不符合直接退出 if (value > target) { return; }
for (int i = startIndex; i < inputSrc.length; i++) { value = value + inputSrc[i]; collect.add(inputSrc[i]); this.recurstion(inputSrc, target, value, i, collect, resultList); // 当结束后,需要移除最后一个元素 collect.remove(collect.size() - 1); value = value - inputSrc[i]; } } } |
leetcode46
题目描述:
给定一个没有重复数字的序列,返回其所有可能的全排列。
示例:
输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/permutations 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 |
解题思路:
我的解题思路就是将数组中的每个元素与剩下的两个元素进行组合,当给合的大小与数组大小一致就放入到结果集中。那如何表示剩余下元素呢,我的办法是将已经遍历过程下标通过一个boolean数组记录下来,这样就能知道了
代码实现
public class SolutionPermute {
public List<List<Integer>> permute(int[] nums) {
Set<List<Integer>> data = new HashSet<>(); List<Integer> currdata = new ArrayList<>();
boolean[] exists = new boolean[nums.length];
this.recurstion(nums, data, currdata, exists);
List<List<Integer>> result = new ArrayList<>(data);
return result; }
private void recurstion( int[] nums, Set<List<Integer>> data, List<Integer> currdata, boolean[] exists) {
// 如果当前组合到达组合的结果大小,则加入到结果集中 if (currdata.size() == nums.length) { data.add(new ArrayList<>(currdata)); return; }
for (int i = 0; i < nums.length; i++) { // 仅对未遍历过元素进行遍历 if (!exists[i]) { exists[i] = true;
currdata.add(nums[i]);
this.recurstion(nums, data, currdata, exists); currdata.remove(currdata.size() - 1);
exists[i] = false; } } } } |
leetcode79
题目描述:
79. 单词搜索
给定一个二维网格和一个单词,找出该单词是否存在于网格中。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。
示例:
board = [ ['A','B','C','E'], ['S','F','C','S'], ['A','D','E','E'] ]
给定 word = "ABCCED", 返回 true. 给定 word = "SEE", 返回 true. 给定 word = "ABCB", 返回 false.
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/word-search 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 |
解题思路
针对此单词搜索,因为存在4种匹配的情况:
情况1,横坐标+1可匹配
情况2,横坐标-1可匹配
情况3,纵坐标+1可匹配
情况4,纵坐标-1可匹配
递归的终止条件呢?当发生字符不匹配,搜索终止,或者搜索到匹配字符,搜索终止,那过有其他条件吗?当然有,那就是横纵坐标,必须在字符的下标范围以内
代码实现
public class SolutionRectustionMySelf {
public boolean exist(char[][] src, String data) {
boolean[][] exists = new boolean[src.length][src[0].length];
boolean existsResult = false;
String srcvalue = null;
//搜索开始的字符位置 for (int i = 0; i < src.length; i++) { for (int j = 0; j < src[i].length; j++) { srcvalue = String.valueOf(src[i][j]); if (data.startsWith(srcvalue)) { existsResult = this.exist(src, "", data, i, j, exists);
if (existsResult) { return true; } } } }
return false; }
/** * 每个字符的匹配可以看作是当前字符与其他字体的一个匹配 * * @param src 原始的匹配字符数组 * @param currData 当前的字符 * @param targetData 匹配的目标字符 * @param rowindex 行索引 * @param cellindex 列索引 * @return */ public boolean exist( char[][] src, String currData, String targetData, int rowindex, int cellindex, boolean[][] exists) {
if (currData.equals(targetData)) { return true; }
if (rowindex < 0 || rowindex >= src.length) { return false; }
if (cellindex < 0 || cellindex >= src[rowindex].length) { return false; }
// 节点已经访问,则标识为false if (exists[rowindex][cellindex]) { return false; }
currData = currData + src[rowindex][cellindex];
if (currData.length() > targetData.length()) { return false; }
// 在进入时标识已经访问 exists[rowindex][cellindex] = true;
// 当字符匹配的时,可能存在4个方向的情况 if (targetData.startsWith(currData)) { if (exist(src, currData, targetData, rowindex + 1, cellindex, exists) || exist(src, currData, targetData, rowindex, cellindex + 1, exists) || exist(src, currData, targetData, rowindex - 1, cellindex, exists) || exist(src, currData, targetData, rowindex, cellindex - 1, exists)) { return true; } } // 退出时还需要标识出未访问 exists[rowindex][cellindex] = false;
return false; } } |