题目描述:给定一个数组A[0,1,…,n-1],请构建一个数组B[0,1,…,n-1],其中B中的元素B[i]=A[0]A[1]…A[i-1]*A[i+1]…*A[n-1]。不能使用除法。
分析:不能使用除法这个要求很不可爱呀,不过就算可以用,也一定注意考虑A[i]为0的情况。
高效的解法:
把B[i]分成A[0]A[1]…A[i-1]和A[i+1]…*A[n-1],分别记做C[i]和D[i],这样B[i]就可以用一个矩阵来创建,在图中,B[i]为矩阵中第i行所有元素的乘积。
不妨定义C[i]=A[0]A[1]…A[i-1],D[i]=A[i+1]…*A[n-1],这样C[i]可以由递归的方式自上而下计算出来,即C[i]=C[i-1]*A[i-1]。类似的,倒过来D[i]=D[i+1]*A[i+1]。
代码:
class Solution {
public:
vector<int> multiply(const vector<int>& A) {
int len = A.size();
if(len <= 0)
return vector<int>();
vector<int> B(len);
B[0] = 1;
for(int i = 1;i < len;i++){
B[i] = B[i-1] * A[i-1];//C[i]
}
int temp = 1;
for(int i = len-2;i >=0;i--){//注意这里i的初始条件(从倒数第2个开始)
temp *= A[i+1];//D[i]
B[i] *= temp;//直接在B[i]的基础上乘
}
return B;
}
};