Devin的LC,CF题解


前言

从今天开始发布自己的LeetCode, CodeForces题解。算是践行一下费曼学习法,如果能够给你提供到帮助那自然是更好了。

一、LeetCode每日一题

题目链接

石子游戏

题解

提示:个人习惯把思考过程都写出来,可以跳着看。

观察数据范围 2 < = p i l e s . l e n g t h < = 500 2 <= piles.length <= 500 2<=piles.length<=500,提示我们可以设计 O ( N 2 ) 或 O ( N 2 l o g N ) O(N^2)或O(N^2logN) O(N2)O(N2logN)的算法。

  • 错误解法:
    • 考虑贪心的去取,每个人每次取出左右端可取的最大值。使用一对对撞指针去维护左右可取的端点即可。
    • 观察如下例子:[1,1,10,2],设a是亚历克斯的得分,b是李的得分。
    • 开始模拟每一轮
      • a = 2, b = 0
      • a = 2, b = 10
      • a = 3, b = 10
      • a = 3, b = 11
    • 而这样选显然不是最优的,也就是说我们的贪心策略是错误的。
  • 正确解法:
    • 如果我们能够解决一个小的区间的问题,那么我们怎样利用这个小区间的答案去递推出大区间的答案呢?
    • d p [ i , j ] dp[i,j] dp[i,j]表示 [ i , j ] [i,j] [i,j]这个区间先手能够获得的最大分数。
    • s u m [ i , j ] sum[i,j] sum[i,j]表示 [ i , j ] [i,j] [i,j]这个区间对应元素的和。
    • 那么 d p [ i , j ] dp[i, j] dp[i,j]可以由两部分构成。
      • 考虑取走左端点,也就是 p i l e s [ i ] piles[i] piles[i],那么我们能取得的最大结果就是 s u m [ i + 1 , j ] − d p [ i + 1 , j ] + p i l e s [ i ] sum[i + 1, j]-dp[i+1,j] + piles[i] sum[i+1,j]dp[i+1,j]+piles[i],因为取走 i i i轮到对方变成先手,而他能在 [ i + 1 , j ] [i+1,j] [i+1,j]区间取得的最大结果就是 d p [ i + 1 , j ] dp[i +1, j] dp[i+1,j],而剩下的就是我们能取到的即(用总的-别人能取到的)。
      • 取走右端点同理,结果为 s u m [ i , j − 1 ] − d p [ i , j − 1 ] + p i l e s [ j ] sum[i,j-1]-dp[i,j-1] + piles[j] sum[i,j1]dp[i,j1]+piles[j]
      • 该区间的答案就是取左与取右中的更大者。
    • 那么 d p [ i , j ] = m a x ( s u m [ i + 1 , j ] − d p [ i + 1 , j ] + p i l e s [ i ] , s u m [ i , j − 1 ] − d p [ i , j − 1 ] + p i l e s [ j ] ) dp[i,j]=max(sum[i+1,j] - dp[i + 1,j] + piles[i], sum[i,j-1]-dp[i,j-1] + piles[j]) dp[i,j]=max(sum[i+1,j]dp[i+1,j]+piles[i],sum[i,j1]dp[i,j1]+piles[j])
    • 只要最后先手在区间 [ 1 , p i l e s . l e n g t h ] [1,piles.length] [1,piles.length]中获得的最大分数>总分数的一半,他就赢了。
vector<int> pref;

int sum(int i, int j) {
    return pref[j] - pref[i - 1];
}

bool stoneGame(vector<int>& piles) {
    int n = piles.size();
    pref.resize(n + 1);
    for (int i = 1; i <= n; i++) pref[i] = pref[i - 1] + pref[i - 1];

    vector<vector<int>> dp(n + 1, vector<int>(n + 1));
    // 子区间长度为1的情况
    for (int i = 1; i <= n; ++i) dp[i][i] = piles[i - 1];
    // 枚举子区间长度p
    for (int p = 2; p <= n; ++p) {
        // 只要[i,j]区间没超过范围就继续循环
        for (int i = 1, j = i + p - 1; j <= n; ++i, ++j) {
            dp[i][j] = max(sum(i + 1, j) - dp[i + 1][j] + piles[i - 1],
                           sum(i, j - 1) - dp[i][j - 1] + piles[j - 1]);
        }
    }
    return dp[1][n] > sum(1, n) / 2;
}

时空复杂度分析

  • 求前缀和时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( n ) O(n) O(n)
  • 我们枚举了 1 到 n 1到n 1n所有长度的子区间并求解 d p dp dp数组,时间复杂度 O ( n 2 ) O(n^2) O(n2),空间复杂度 O ( n 2 ) O(n^2) O(n2)
  • 总时间复杂度 O ( n 2 ) O(n^2) O(n2),空间复杂度 O ( n 2 ) O(n^2) O(n2)

二、CodeForces题解

1.Perfectly Imperfect Array

题目

Perfectly Imperfect Array

题目大意

给你 n n n个数字,判断是否存在一个子序列,使得这个子序列的乘积不是完全平方数。存在输出YES,否则输出NO。

  • 子序列:从这 n n n个数中随便删掉一些数字剩下的数(保持顺序不变)
  • 完全平方数:能够写成 a ∗ a a*a aa这种形式的数字,例如: 9 = 3 ∗ 3 9=3*3 9=33

题解

观察数据范围 1 < = n < = 100 1<=n<=100 1<=n<=100 提示我们可以设计一个最坏是 O ( n 3 ) O(n^3) O(n3)的算法。

  • 什么情况下一定存在完全平方数?
  • 答:当给你的 n n n个数都是完全平方数的时候。考虑两个数 a , b a,b a,b若他们均为完全平方数,则 a = x ∗ x , b = y ∗ y a=x*x,b=y*y a=xx,b=yy所以 a ∗ b = x ∗ x ∗ y ∗ y = ( x ∗ y ) ∗ ( x ∗ y ) a*b=x*x*y*y=(x*y)*(x*y) ab=xxyy=(xy)(xy)也是完全平方数。多个数字的情况可用数学归纳法严格证明。
  • 所以想到一个解法,验证每个数字是否为完全平方数若是,则一定没有办法,输出NO。否则只要选择那个非完全平方数的数字作为子序列即可。
#include <bits/stdc++.h>
using namespace std;

void solve() {
    int n;
    cin >> n;
    bool good = false;
    for (int i = 0, v; i < n; ++i) {
        scanf("%d", &v);
        int k = (int)sqrt(v);
        if (k * k != v) good = true;
    }
    if (good) cout << "YES\n";
    else cout << "NO\n";
}

int main() {
    int t;
    cin >> t;
    while (t--) solve();
    return 0;
}

时空复杂度分析

  • 循环 n n n次,内置求平方根函数可看作 O ( 1 ) O(1) O(1) ,所以总时间复杂度 O ( n ) O(n) O(n)
  • 只用了常数个变量,总空间复杂度 O ( 1 ) O(1) O(1)

2.AND 0, Sum Big

题目

AND 0, Sum Big

题目大意

给你一个 n n n和一个 k k k,任意选择 n n n [ 0 , 2 k ) [0,2^k) [0,2k)这个区间中的数字,每个数字可选任意次,使得所有数字的和最大并且按位与的结果为0的方案数,由于结果很大所以要取余 1 0 9 + 7 10^9+7 109+7

题解

观察数据范围 1 < = n < = 1 0 5 , 1 < = k < = 20 1<=n<=10^5, 1<=k<=20 1<=n<=105,1<=k<=20 提示我们可以设计一个最坏是 O ( n l o g n ) O(nlogn) O(nlogn)的算法。

  • 首先我们可以直接找到满足条件的最大和,按照第一个数字取0其余全部取最大值即可,也就是 ( n − 1 ) ∗ ( 2 k − 1 ) (n - 1) * (2^k-1) (n1)(2k1)
  • 考虑完全背包,发现数字范围大的可怕。所以考虑组合数学的方法。
  • 我们按比特位去考虑,要想让这一位做与的结果为0,在这 n n n个数字中至少需要一个数字的该位为0。然而我们又想让总和最大,所以贪心的去考虑,其他数字的该位必然为1,也就是 n n n个数字中至多需要一个数字的该位为0。这也就证明了,每一位恰好只有一个0。
  • 横轴代表这 n n n个数字,纵轴 k k k代表每一位,以第一位举例,第一位取0的可能有 n n n种,这 k k k位都是如此,所以答案就是 n k n^k nk在这里插入图片描述
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int mod = 1e9 + 7;
 
 // 快速幂O(logn),求a^n
int fastPow(ll a, int n) {
    ll ans = 1;
    while (n > 0) {
        if (n & 1) ans = (ans * a) % mod;
        a = (a * a) % mod;
        n >>= 1;
    }
    return (int) ans;
}
 
void solve() {
    int n, k; cin >> n >> k;
    cout << fastPow(n, k) << endl;
}
 
int main() {
    int t;
    cin >> t;
    while (t--) solve();
    return 0;
}

时空复杂度分析

  • 总复杂度取决于快速幂函数 O ( l o g k ) O(logk) O(logk)
  • 只用了常数个变量,总空间复杂度 O ( 1 ) O(1) O(1)

3.Product 1 Modulo N

题目

Product 1 Modulo N

题目大意

给你一个整数 n n n选择 [ 1 , n ) [1,n) [1,n)中尽可能长的一个子序列使得他们的乘积对 n n n取余为 1 1 1

题解

观察数据范围 2 < = n < = 1 0 5 2<=n<=10^5 2<=n<=105 提示我们可以设计一个最坏是 O ( n l o g n ) O(nlogn) O(nlogn)的算法。

  • 首先从题目出发。设乘积为 p p p, 乘积对 n n n取余为 1 1 1代表 p = c ∗ n + 1 p=c*n+1 p=cn+1
  • 思考什么时候 p p p n n n取余不为 1 1 1?
    • 答:当存在一个数 k k k不与 n n n互质,而且它贡献给了乘积 p , 即 p = c 1 ∗ k p,即p=c_1*k p,p=c1k
    • 因为 k k k n n n不互质时则存在 d > 1 d>1 d>1,使得 d ∣ k d|k dk d ∣ n d|n dn,即 k = c 2 ∗ d , n = c 3 ∗ d k=c_2*d,n=c_3*d k=c2d,n=c3d
    • 假设 p p p包含 k k k
    • p = c ∗ n + 1 = c ∗ ( c 3 ∗ d ) + 1 p=c*n+1=c*(c_3*d)+1 p=cn+1=c(c3d)+1
    • 又因为 p = c 1 ∗ k = c 1 ∗ c 2 ∗ d p=c_1*k=c_1*c_2*d p=c1k=c1c2d
    • 所以 c 1 ∗ c 2 ∗ d = c ∗ c 3 ∗ d + 1 c_1*c_2*d=c*c_3*d+1 c1c2d=cc3d+1,由于整数的离散性,这个式子当且仅当 d = 1 d=1 d=1时成立。
    • 而与我们假设的 d > 1 d>1 d>1矛盾,所以我们的 p p p中不应该包含不与 n n n互质的 k k k
  • 这样我们也就想到了一个解法枚举 [ 1 , n ) [1,n) [1,n)中所有与 n n n互质的数,并把他们作为 p p p的一部分。
    • 若最后的结果取余 n n n等于1,则直接输出。
    • 否则,让该结果除掉 p p p即可。
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
 
void solve() {
    int n; cin >> n;
    vector<int> cop;
    ll p = 1;
    for (int i = 1; i < n; ++i) {
        if (__gcd(i, n) == 1) {
            cop.push_back(i);
            p = (p * i) % n;
        }
    }
    
    if (p != 1) {
        cout << cop.size() - 1 << endl;
        for (int v : cop) {
            if (v == 0) break;
            if (v == p) continue;
            printf("%d ", v);
        }
    } else {
        cout << cop.size() << endl;
        for (int v : cop) {
            if (v == 0) break;
            printf("%d ", v);
        }
    }
    cout << endl;
}
 
int main() {
    solve();
    return 0;
}

时空复杂度分析

  • 循环 n n n次,内置求最大公约数的函数可看作 O ( l o g n ) O(logn) O(logn) ,还有 O ( n ) O(n) O(n)的输出结果,所以总时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)
  • 存储要输出的数字,总空间复杂度 O ( n ) O(n) O(n)
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值