第五单元 用python学习微积分(三十二)无穷的处理--不定式(下)和反常积分

这篇博客回顾了洛必达法则,解释了反常积分的概念,通过Python可视化展示了1/x的p次幂积分在不同p值下的行为,讨论了其收敛性。此外,还探讨了放射性粒子衰减的平均度和概率计算中的常量。博客通过多个例子说明了积分收敛和发散的条件,并提供了极限比较的方法。
摘要由CSDN通过智能技术生成

本文内容来自于学习麻省理工学院公开课:单变量微积分-反常积分-网易公开课

Bullseye:第一单元 用python学习微积分(一) 安装开发环境Anaconda 和 导数(上)- 1/x的导数

目录

一、洛必达法则复习

1、无限比无限的情况( )

二、反常积分

1、基本概念

2、例1

(1)( k > 0 )

(2) 放射性粒子的平均衰减度(概率相关)

3、例2 一个概率计算中重要的常量

4、例3 1/x的p次幂 (p>0)

(1)临界情况 p=1

(2)

(3)结论:式子 , 当 时是发散的,而当 p >1 时是收敛的( )

5、极限的比较

6、例4

7、例5

8、例2 - 续


一、洛必达法则复习

1、无限比无限的情况( \frac{\infty}{\infty}

如果f(x) \rightarrow \infty , g(x) \rightarrow \infty, \frac{f'(x)}{g'(x)} \rightarrow_{x\rightarrow a} L 成立, 则 \frac{f(x)}{g(x)} \rightarrow_{x\rightarrow a} L , 其中 a\rightarrow \pm \inftyL \rightarrow \pm\infty是允许的。

f(x) \ll_{x\rightarrow \infty} g(x)可以理解为 \frac{f(x)}{g(x)} \rightarrow_{x\rightarrow \infty} 0( f,g > 0 )

函数值排序:

增长: ln(x) \ll x^p \ll e^x \ll e^{x^2} \rightarrow_{x\rightarrow \infty, p>0} \infty

函数值排序:

减小:\frac{1}{ln(x)} \gg \frac{1}{x^p} \gg \frac{1}{ e^x} \gg\frac{1}{ e^{x^2} }\rightarrow_{x\rightarrow \infty, p>0} 0

二、反常积分

1、基本概念

\int_a^{\infty}f(x)dx = \lim_{N\rightarrow \infty}\int_{a} ^{N}f(x)dx

如果这个积分极限存在(这个极限有限),他就是收敛的(converges),否则就是发散的(diverges)

函数的积分收敛的情况,也就是函数曲线到x轴的面积是有限的,否则这个曲线下的面积就是无限的

添加图片注释,不超过 140 字(可选)

2、例1

(1)\int_0^{\infty} e^{-kx}dx( k > 0 )

 

import numpy as np 
from sympy import *
import matplotlib.pyplot as plt 
figure, ax= plt.subplots( 1 ) 
ax.set_aspect( 1 ) 
def DrawXY1(xFrom,xTo,steps,expr,color,label,plt, arrow =False):
    yarr = []
    xarr = np.linspace(xFrom ,xTo, steps) 
    for xval in xarr:
        #print(expr.subs(x,xval), xval)
        yval = expr.subs(x,xval)
        yarr.append(yval)
    y_nparr = np.array(yarr) 
    x_nparr = np.array(xarr) 
    length = len (xarr)
    
    plt.plot(x_nparr, y_nparr, c=color, label=label)  
    if(arrow and steps > 2):
        plt.arrow(float(x_nparr[0]),float( y_nparr[0]),float( x_nparr[2]-x_nparr[0]),float( y_nparr[2]-y_nparr[0]), width=.02, color = color) 
        
def DrawXY(tFrom,tTo,steps,exprX,exprY, color,label,plt, arrow =False):
    xarr = []
    yarr = []
    tarr = np.linspace(tFrom ,tTo, steps) 
    for tval in tarr:
        xval = exprX.subs(t,tval)
        xarr.append(xval)
        yval = exprY.subs(t,tval)
        yarr.append(yval)
    y_nparr = np.array(yarr) 
    x_nparr = np.array(xarr) 
    length = len (xarr)
    
    plt.plot(x_nparr, y_nparr, c=color, label=label)  
    if(arrow and steps > 2):
        plt.arrow(float(x_nparr[0]),float( y_nparr[0]),float( x_nparr[2]-x_nparr[0]),float( y_nparr[2]-y_nparr[0]), width=.02, color = color) 


x = symbols('x')
k=2
expr = np.e**(-k**2*x)

DrawXY1( 0.1,4,50,expr,color='c', label=' e**(-k**2*x)',plt = plt, arrow = True)


plt.legend(loc='lower right')
plt.show()

\int_0^{N} e^{-kx}dx = -\frac{1}{k}e^{-kx}|_0^{N} = -\frac{1}{k}e^{-kN} - (-\frac{1}{k}) \rightarrow_{N\rightarrow \infty,k>0} \frac{1}{k}

简便写法: \int_0^{\infty} e^{-kx}dx = -\frac{1}{k}e^{-kx}|_0^{\infty} = -\frac{1}{k}e^{-\infty} - (-\frac{1}{k}) = 0 +\frac{1}{k} =\frac{1}{k}

(2) 放射性粒子的平均衰减度(概率相关)

在时间T内辐射出的粒子的总数=\int_{0}^{T}Ae^{-kt}dt A代表某总数

所能辐射出的粒子的总数=\int_{0}^{\infty}Ae^{-kt}dt = \frac{A}{k}

3、例2 一个概率计算中重要的常量

\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt \pi

以上这些式子都是收敛的,从而告诉我们当遇到包含它们的式子时,我们能知道这些是有极限的

4、例3 1/x的p次幂 (p>0)

(1)临界情况 p=1

\int_{1}^{\infty} \frac{dx}{x}

\int_{1}^{N} \frac{dx}{x} = ln(x)|_{1}^{N} = ln(N) -0 \rightarrow_{n \rightarrow \infty} \infty

所以这个积分是发散的

 

x = symbols('x')

expr = 1/x

DrawXY1( 1,50,50,expr,color='c', label='1/x',plt = plt, arrow = False)

expr = ln(x)
DrawXY1( 1,50,50,expr,color='r', label='ln(x)',plt = plt, arrow = False)

plt.legend(loc='lower right')
plt.show()

(2)

\int_{1}^{\infty} \frac{dx}{x^p} =\frac{x^{-p+1}}{-p+1}|_{1}^{\infty} =\frac{\infty^{-p+1}}{-p+1} - \frac{1}{-p+1}

当 0<p<1时

\frac{\infty^{-p+1}}{-p+1} - \frac{1}{-p+1} \rightarrow_{0<p<1} \infty - \frac{1}{-p+1} = \infty

当 p>1时

\frac{\infty^{-p+1}}{-p+1} - \frac{1}{-p+1} \rightarrow_{p>1} 0 - \frac{1}{-p+1} = \frac{1}{p-1}

(3)结论:式子 \int_{1}^{\infty} \frac{dx}{x^p}, 当 p\leq1时是发散的,而当 p >1 时是收敛的( =\frac{1}{p-1}

5、极限的比较

x\rightarrow \infty, 如果 f(x) 和 g(x) 相似(f(x) \sim g(x)) .....(means\frac{f(x)}{g(x)}\rightarrow_{x\rightarrow \infty} 1) ,

此时 \int_{a}^{\infty} f(x)dx , \int_{a}^{\infty} g(x)dx( a 取一个很大的值 )同时收敛或同时发散

6、例4

\int_{0}^{\infty} \frac{dx}{\sqrt{x^2 +10}}

\frac{1}{\sqrt{x^2 +10}} \sim \frac{1}{\sqrt{x^2}}

\int_{0}^{\infty} \frac{dx}{\sqrt{x^2 +10}} \sim \int_{1}^{\infty} \frac{dx}{\sqrt{x^2 }} =\int_{1}^{\infty} \frac{dx}{x}

结果是发散的,所以可以忽略有限的 \int_{0}^{1} \frac{dx}{\sqrt{x^2 +10}} , 这里不考虑 \int_{0}^{1} \frac{dx}{x}是因为这个式子是发散的和原式(\int_{0}^{1} \frac{dx}{\sqrt{x^2 +10}})同条件下的结果有很大的不同。

7、例5

\int_{0}^{\infty} \frac{dx}{\sqrt{x^3 +3}}

\frac{1}{\sqrt{x^3 +3}} \sim \frac{1}{\sqrt{x^3}} = x^{\frac{3}{2}}

\int_{10}^{\infty} \frac{dx}{\sqrt{x^3 +3}} \sim \int_{10}^{\infty} \frac{dx}{x^{\frac{3}{2}}} = \frac{1}{\frac{3}{2}-1} =2                (\frac{3}{2} >1, 由例3结论 )

得出结论这个积分是收敛的

8、例2 - 续

\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt \pi

expr = np.e**(-x**2)
DrawXY1( -5,5,50,expr,color='r',label= '',plt = plt, arrow = False)
plt.legend(loc='lower right')
plt.show() 

e^{-x^2}函数图形

 

这个图形 e^{-x^2} 根据y轴对称

\int_{-\infty}^{\infty} e^{-x^2} dx =2 \int_{0}^{\infty} e^{-x^2}

做个比较

x \geq 1 , -x^{-2} \leq -x

e^{-x^2} \leq e^{-x}

所以有

2 \int_{0}^{\infty} e^{-x^2} \leq 2\int_{0}^{1} e^{-x^2}dx+ 2\int_{1}^{\infty}e^{-x}dx

\int_{1}^{\infty}e^{-x}dx = -e^{-x}|_{1}^{\infty} = 0 + \frac{1}{e} = \frac{1}{e}

2\int_{0}^{1} e^{-x^2}dx是收敛的

可知 \int_{-\infty}^{\infty} e^{-x^2} dx 是收敛的

9、反常积分的第二种类型

\int_0^{\infty} \frac{dx}{\sqrt{x}} , \int_0^{\infty} \frac{dx}{x},\int_0^{\infty} \frac{dx}{x^2}

一般这些积分还是可以直接计算得到它们是收敛还是发散,但是老师提到了一个不一样的例子

错误 \int_{-1}^{1} \frac{dx}{x^2} = -x^{-1} |_{-1}^{1} = -(1^{-1}) -(-(-1)^{-1}) = -1 -1 = -2 错误

而函数 \frac{1}{x^2} 在(-1,1)区间的图形是这样的

expr = 1/(x**2)
DrawXY1( -1,-0.1,50,expr,color='r',label= '',plt = plt, arrow = False)
DrawXY1( 0.1,1,50,expr,color='r',label= '',plt = plt, arrow = False)
plt.legend(loc='lower right')
plt.show()

 

我个人觉得,这里不能直接计算这个积分,是因为在-1 到1 的范围内 x=0处是奇点 , 函数不连续。

个人觉得应该是这样计算,由于这个函数在y轴对称,

\int_{-1}^{1} \frac{dx}{x^2} = 2\int_{0^+}^{1} \frac{dx}{x^2} = -x^{-1}|_{0^+}^{1} = 2(-1 - (-\frac{1} {0^+}))=\infty

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bullseye

您的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值