题目描述
你总共有 n 枚硬币,你需要将它们摆成一个阶梯形状,第 k 行就必须正好有 k 枚硬币。
给定一个数字 n,找出可形成完整阶梯行的总行数。
n 是一个非负整数,并且在32位有符号整型的范围内。
示例 1:
n = 5
硬币可排列成以下几行:
¤
¤ ¤
¤ ¤
因为第三行不完整,所以返回2.
示例 2:
n = 8
硬币可排列成以下几行:
¤
¤ ¤
¤ ¤ ¤
¤ ¤
因为第四行不完整,所以返回3.
思路分析
- 关键点是,如何找到对应n所匹配的行数,由于是阶梯型排列的,所以我们猜测的行数可以用等差数列求和公式来求和。
- 明确了这一点后,思路就是:用二分查找法,找到行数
- 如果 n - (mid + 1)* mid / 2 大于等于0,小于mid+1,那么n就可以匹配,因为下一行肯定没有填充满,所以返回n
- 如果n - (mid + 1)* mid / 2 大于等于 mid+ 1,那么就说明我们的这个 n 找的比较小了,那么low就需要更新到mid + 1
- 如果n - (mid + 1)* mid / 2 小于 0 ,那就说明 n 找大了,那么high 就需要更新为 mid - 1
代码示例
class Solution(object):
def arrangeCoins(self, n):
"""
:type n: int
:rtype: int
"""
low = 0
high = n
while low <= high:
mid = int((low + high) / 2)
if 0 <= n - (1 + mid)* mid /2 < mid + 1:
return mid
elif n - (1+mid)*mid/2 >= mid + 1:
low = mid + 1
elif n - (1+mid)*mid/2 < 0:
high = mid - 1