超详细理解:kmp算法next数组求解过程和回溯的含义

前言

KMP算法是用来求一个较长字符串是否包含另一个较短字符串的算法。具体算法下一篇写吧,这篇主要解释next数组的求解。

代码

代码应该都看过了,先贴在这里,其中最难理解的地方就是求next数组,以及k往前回溯,这也是写本文的目的。

int *next = new int[length];
//这里的str是被包含的较短字符串,length是这个字符串的长度。
void next(char *str, int *next, int length)
{
    next[0] = -1;
    int k = -1;
    
### KMP算法next数组的计算 在理解KMP算法中的`next`数组之前,先要明白其作用在于记录模式串前缀后缀相同部分的最大长度。这有助于当发生失配时快速移动指针而无需回溯主串。 对于给定的一个模式串P,`next[i]`表示的是从模式串起始位置到索引i-1处字符串具有的最长相等真前缀与真后缀的长度[^1]。具体来说: - 当处理模式串的第一位时(即索引0),由于不存在任何前置字符可形成前后缀对比,则设定`next[0]=−1`或某些实现里设为0; - 对于后续每一位字符,在构建`next`表过程中会利用已知信息来决定当前项应取何值;如果当前位置之前的序列存在非零长度相同的前缀后缀,则该位置对应的`next`值等于这些共同部分加上一后的数值;反之则置为零。 下面通过Python代码展示如何基于上述逻辑创建一个函数用于生成任意输入模式串所对应之`next`数组: ```python def compute_next(pattern): next_array = [0] * len(pattern) j = 0 for i in range(1, len(pattern)): while j > 0 and pattern[j] != pattern[i]: j = next_array[j - 1] if pattern[i] == pattern[j]: j += 1 next_array[i] = j return next_array ``` 此段程序实现了动态规划的思想,逐步填充整个`next`列表直至完成全部所需数据准备。每当遇到新的待比较字符时,都会尝试寻找能够延续先前匹配关系的最佳起点,并据此更新相应的`next`条目[^2]。 举例而言,考虑模式串 `"ababc"` ,按照以上定义过程依次确定各元素的具体数值如下所示: | 序号 | 字符 | 前缀集合 | 后缀集合 | 最长相等前后缀长度 | |------|------|----------------|------------------|--------------------| | 0 | a | {""} | {"a"} | 0 | | 1 | b | {"a", ""} | {"b", "ab"} | 0 | | 2 | a | {"a", "ab", ""}|{"ba","aba","aab"}| 1 ("a") | | 3 | b |{"a","ab","aba",""}|{"bab","abab","abb","b"}| 2 ("ab") | | 4 | c |{"a","ab","aba","abab",""}|{"bc","abc","bac","abac","c"}| 0 | 最终得到 `next=[0, 0, 1, 2, 0]` 这样的结果集作为辅助工具参与到实际搜索流程当中去[^3]。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值