递归和非递归方法实现斐波那契数列

本文探讨了如何使用递归和非递归两种方法来实现经典的斐波那契数列。通过对算法的详细阐述,帮助读者理解这两种不同实现方式的原理和优缺点。
摘要由CSDN通过智能技术生成

介绍

斐波那契数列(Fibonacci sequence),又称 黄金分割 数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci [1]    )以兔子繁殖为例子而引入,故又称为“ 兔子数列 ”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以 递归 的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)。看了百度前端面试题,用递归和非递归形式写斐波那契数列。这里用Python写了一下。

代码

#递归形式,返回斐波那契数列的第n+1个数
def fib(n):
    
    if n <= 1:
        return n
    return fib(n-2)+fib(n-1)

fib = [fib(i) for i in range(10)]
print(fib)

#非递归形式,返回最大数小于n的斐波那契数列
def fib1(n):
    res = []
    num1 = 0
    num2 = 1
    while num1 < n:
        res.append(num1)
        num1,num2 = num2,num1 + num2
        
    return res
    
print(fib1(10))


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值