bupt-2015-3

第三题:图像压缩存储

转载自博主葡萄家


描述:以二维数组表示图像,其值只有01两种,寻找两幅图像中最大的相同部分

输入:第一行输入一个n,接下来的2n行输入两个n * n数组,寻找一个最大的m * m子区域,使得两个数组在该子区域完全相同

输出:输出上诉m

样例输入:

              4

              1 1 1 1

              1 1 1 0

              1 1 1 0

              1 1 1 1

              0 1 1 1

              0 1 1 1

              0 1 1 1

              0 1 1 0

样例输出:

              2

题目大意:题目所要求的是两个矩阵最大的相同部分。


解题思路:

可以将两个矩阵直接异或(^)出来。

0异或0等于0

1异或1等于0

0异或1等于1

(相同异或为0,不同异或为1)

两个矩阵异或之后取非。

然后题目就变成了求第三个矩阵里的最大的为1的方阵。

我们可以采用动态规划的思想。

首先从左到右遍历一次寻找每个点可以向左延伸到最远的距离

然后从上到下遍历一次寻找每个点可以向上延伸到最远的距离

最后直接从左上角到右下角。看直接能到最左上角的距离

就是每个点可以延伸最大的方阵的边长。


#include<iostream>  
#include<cstring>  
#define maxn 1005  
using namespace std;  
int a[maxn][maxn];  
int dp1[maxn][maxn];    //从左到右  
int dp2[maxn][maxn];    //从上到下  
int dp3[maxn][maxn];    //从左上角到右下角  
int n;  
  
int mi(int a,int b)  
{  
    if(a<b) return a;  
    return b;  
}  
  
int ma(int a,int b)  
{  
    if(a<b) return b;  
    return a;  
}  
  
int main()  
{  
    int tes;  
  
    int i,j;  
    while(cin>>tes)  
    {  
        while(tes--)  
        {  
            cin>>n;  
  
            for(i=1; i<=n; i++)  
                for(j=1; j<=n; j++)  
                    scanf("%d",&a[i][j]);  
  
            int tmp;  
            for(i=1; i<=n; i++)  
                for(j=1; j<=n; j++)  
                {  
                    scanf("%d",&tmp);  
                    a[i][j]=!(a[i][j]^tmp);  
                }  
  
            for(i=1; i<=n; i++)  
            {  
                dp1[i][0]=0;  
                for(j=1; j<=n; j++)  
                {  
                    if(a[i][j]==1)  
                        dp1[i][j]=dp1[i][j-1]+1;  
                    else  
                        dp1[i][j]=0;  
                }  
            }  
  
            for(i=1; i<=n; i++)  
            {  
                dp2[0][i]=0;  
                for(j=1; j<=n; j++)  
                {  
                    if(a[j][i]==1)  
                        dp2[j][i]=dp2[j-1][i]+1;  
                    else  
                        dp2[j][i]=0;  
                }  
            }  
  
            dp3[0][0]=0;  
  
            int res=0;  
            for(i=1; i<=n; i++)  
                for(j=1; j<=n; j++)  
                {  
                    int t=dp3[i-1][j-1];  
                    t=mi(t,dp1[i][j-1]);  
                    t=mi(t,dp2[i-1][j]);  
                    if(a[i][j]==1)  
                        dp3[i][j]=t+1;  
                    else  
                        dp3[i][j]=0;  
                    res=ma(res,dp3[i][j]);  
                }  
  
            cout<<res<<endl;  
            
        }  
    }  
    return 0;  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值