HBase介绍

        HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。


原文地址:http://www.cnblogs.com/raphael5200/p/5229164.html

                 


1、Hadoop生太圈

  通过Hadoop生态圈,可以看到HBase的身影,可见HBase在Hadoop的生态圈是扮演这一个重要的角色那就是  实时、分布式、高维数据 的数据存储;

2、HBase简介 

  – HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩、 实时读写的分布式数据库 

  – 利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce来处理 HBase中的海量数据,利用Zookeeper作为其分布式协同服务

  – 主要用来存储非结构化和半结构化的松散数据(列存NoSQL数据库)

3、HBase数据模型

  以关系型数据的思维下会感觉,上面的表格是一个5列4行的数据表格,但是在HBase中这种理解是错误的,其实在HBase中上面的表格只是一行数据;

  Row Key:

    – 决定一行数据的唯一标识

    – RowKey是按照字典顺序排序的。

    – Row key最多只能存储64k的字节数据。

  Column Family列族(CF1、CF2、CF3) & qualifier列:

    – HBase表中的每个列都归属于某个列族,列族必须作为表模式(schema) 定义的一部分预先给出。如create ‘test’, ‘course’;

    – 列名以列族作为前缀,每个“列族”都可以有多个列成员(column,每个列族中可以存放几千~上千万个列);如 CF1:q1, CF2:qw,

       新的列族成员(列)可以随后按需、动态加入,Family下面可以有多个Qualifier,所以可以简单的理解为,HBase中的列是二级列,

     也就是说Family是第一级列,Qualifier是第二级列。两个是父子关系。

    – 权限控制、存储以及调优都是在列族层面进行的;

    – HBase把同一列族里面的数据存储在同一目录下,由几个文件保存。

    – 目前为止HBase的列族能能够很好处理最多不超过3个列族。

  Timestamp时间戳:

    – 在HBase每个cell存储单元对同一份数据有多个版本,根据唯一的时间 戳来区分每个版本之间的差异,不同版本的数据按照时间倒序排序,

     最新的数据版本排在最前面。

    – 时间戳的类型是64位整型。

    – 时间戳可以由HBase(在数据写入时自动)赋值,此时时间戳是精确到毫 秒的当前系统时间。

    – 时间戳也可以由客户显式赋值,如果应用程序要避免数据版本冲突, 就必须自己生成具有唯一性的时间戳。

  Cell单元格:

    – 由行和列的坐标交叉决定;

    – 单元格是有版本的(由时间戳来作为版本);

    – 单元格的内容是未解析的字节数组(Byte[]),cell中的数据是没有类型的,全部是字节码形式存贮。

     • 由{row key,column(=<family> +<qualifier>),version}唯一确定的单元。

 

4、HBase体系架构

  

    Client

     • 包含访问HBase的接口并维护cache来加快对HBase的访问

    Zookeeper

     • 保证任何时候,集群中只有一个master

     • 存贮所有Region的寻址入口。

     • 实时监控Region server的上线和下线信息。并实时通知Master

     • 存储HBase的schema和table元数据

    Master

     • 为Region server分配region

     • 负责Region server的负载均衡

     • 发现失效的Region server并重新分配其上的region

     • 管理用户对table的增删改操作

    RegionServer

     • Region server维护region,处理对这些region的IO请求

     • Region server负责切分在运行过程中变得过大的region 

 

     HLog(WAL log):

      – HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是 HLogKey对象,HLogKey中记录了写入数据的归属信息,

         除了table和 region名字外,同时还包括sequence number和timestamp,timestamp是” 写入时间”,sequence number的起始值为0,

       或者是最近一次存入文件系 统中sequence number。

      – HLog SequeceFile的Value是HBase的KeyValue对象,即对应HFile中的 KeyValue

    Region

      – HBase自动把表水平划分成多个区域(region),每个region会保存一个表 里面某段连续的数据;每个表一开始只有一个region,随着数据不断插 入表,

       region不断增大,当增大到一个阀值的时候,region就会等分会 两个新的region(裂变);

      – 当table中的行不断增多,就会有越来越多的region。这样一张完整的表 被保存在多个Regionserver上。

    Memstore 与 storefile

      – 一个region由多个store组成,一个store对应一个CF(列族)

      – store包括位于内存中的memstore和位于磁盘的storefile写操作先写入 memstore,当memstore中的数据达到某个阈值,

       hregionserver会启动 flashcache进程写入storefile,每次写入形成单独的一个storefile

      – 当storefile文件的数量增长到一定阈值后,系统会进行合并(minor、 major compaction),在合并过程中会进行版本合并和删除工作 (majar),

       形成更大的storefile。

      – 当一个region所有storefile的大小和超过一定阈值后,会把当前的region 分割为两个,并由hmaster分配到相应的regionserver服务器,实现负载均衡。

      – 客户端检索数据,先在memstore找,找不到再找storefile

      – HRegion是HBase中分布式存储和负载均衡的最小单元。最小单元就表 示不同的HRegion可以分布在不同的HRegion server上。

      – HRegion由一个或者多个Store组成,每个store保存一个columns family。

      – 每个Strore又由一个memStore和0至多个StoreFile组成。

       如图:StoreFile 以HFile格式保存在HDFS上。

    

             



官方帮助文档:http://hbase.apache.org/book.html  PDF:http://hbase.apache.org/apache_hbase_reference_guide.pdf

1、安装前准备  

  – Hadoop集群要启动正常
  – Zookeeper集群启动正常

   HBase 分布式存储的运行依托于Zookeeper和HDFS所以必须有一个完整的Hadoop分布式运行环境和Zookeeper运行环境;

   Hadoop高可用安装参见:http://www.cnblogs.com/raphael5200/p/5154325.html

2、安装HBase

  1)、配置hbase-env.sh

    进入HBase 的conf目录下,编辑hbase-env.sh  添加如下配置:  

# 指定HBase是否使用HBase本身自带的Zookeeper
export HBASE_MANAGES_ZK=false
# 指定Jdk目录
export JAVA_HOME=/usr/java/jdk1.7.0_79
# 指定Hadoop配置文件目录
export HBASE_CLASSPATH=/usr/local/hadoop-2.5.1/etc/hadoop

 

  2)、配置hbase-site.xml

    编辑conf目录下的hbase-site.xml,配置内容如下:

复制代码
# 指定HDFS的根目录,在这个地方,如果想使用HBase高可用的话,必须配置成dfs.nameservices 不能配置节点名称
<property>
        <name>hbase.rootdir</name>
        <value>hdfs://raphael/hbase</value>
</property>
<property>
        <name>hbase.cluster.distributed</name>
        <value>true</value>
</property>
# 配置Zookeeper节点,配置可不加端口
<property>
        <name>hbase.zookeeper.quorum</name>
        <value>node5,node6,node7</value>
</property>
复制代码

 

  3)、配置reginservers,数据节点

    编辑conf下的regionservers,在该文件中配置HBase的节点,每台节点占一行:  

node5
node6
node7

 

  4)、配置HBase环境变量

    编辑/root/.bash_profile 在该文件中配置HBase的环境变量:

复制代码
PATH=$PATH:$HOME/bin

JAVA_HOME=/usr/java/jdk1.7.0_79
PATH=$PATH:$JAVA_HOME/bin
export JAVA_HOME
HADOOP_HOME=/usr/local/hadoop-2.5.1
export HADOOP_HOME
HIVE_HOME=/usr/local/apache-hive-1.2.1
export HIVE_HOME
HBASE_HOME=/usr/local/hbase-1.1.3
export HBASE_HOME
PATH=$PATH:/usr/local/zookeeper-3.4.6/bin/:$HADOOP_HOME/bin/:$HADOOP_HOME/sbin/:$HIVE_HOME/bin/:$HBASE_HOME/bin
export PATH
复制代码

  配置完成以后,将HBase分发到其他的HBase节点上:

scp -r /usr/local/hbase  root@node6:/usr/local/hbase

 

  5)、启用HBase

复制代码
#首先启动Zookeeper的节点
$ zkServer.sh start

#再启动Hadoop
$ start-all.sh

#最后启动HBase
$ start-hbase.sh
复制代码

  启动完成以后就可以访问 http://节点:16010 来查看了

  在关闭节点之前必须先关闭HBase,否则下次启动HBase有可以会出错;

 

3、使用HBase 和 Hbase使用帮助

  1)、进入HBase 

#使用命令进入HBase Shell
$ hbase shell

The HBase shell is the (J)Ruby IRB with the above HBase-specific commands added.
For more on the HBase Shell, see http://hbase.apache.org/book.html
hbase(main):003:0> 

  2)、使用HBase帮助

    HBase  提供了大量的帮助文档,只要在HBase 下使用命令help就能够查看HBase所有关键字的帮助

复制代码
hbase(main):003:0> help

HBase Shell, version 1.1.3, r72bc50f5fafeb105b2139e42bbee3d61ca724989, Sat Jan 16 18:29:00 PST 2016
Type 'help "COMMAND"', (e.g. 'help "get"' -- the quotes are necessary) for help on a specific command.
Commands are grouped. Type 'help "COMMAND_GROUP"', (e.g. 'help "general"') for help on a command group.

COMMAND GROUPS:
  Group name: general
  Commands: status, table_help, version, whoami

  Group name: ddl
  Commands: alter, alter_async, alter_status, create, describe, disable, disable_all, drop, drop_all, enable, enable_all, exists, get_table, is_disabled, is_enabled, list, show_filters

  Group name: namespace
  Commands: alter_namespace, create_namespace, describe_namespace, drop_namespace, list_namespace, list_namespace_tables

  Group name: dml
  Commands: append, count, delete, deleteall, get, get_counter, get_splits, incr, put, scan, truncate, truncate_preserve

...
复制代码

    如果不知道某个关键字如何使用的话,只需要在Hbase下直接建入该关键字即可:

复制代码
hbase(main):004:0> put

ERROR: wrong number of arguments (0 for 4)

Here is some help for this command:
Put a cell 'value' at specified table/row/column and optionally
timestamp coordinates.  To put a cell value into table 'ns1:t1' or 't1'
at row 'r1' under column 'c1' marked with the time 'ts1', do:

  hbase> put 'ns1:t1', 'r1', 'c1', 'value'
  hbase> put 't1', 'r1', 'c1', 'value'
  hbase> put 't1', 'r1', 'c1', 'value', ts1
  hbase> put 't1', 'r1', 'c1', 'value', {ATTRIBUTES=>{'mykey'=>'myvalue'}}
  hbase> put 't1', 'r1', 'c1', 'value', ts1, {ATTRIBUTES=>{'mykey'=>'myvalue'}}
  hbase> put 't1', 'r1', 'c1', 'value', ts1, {VISIBILITY=>'PRIVATE|SECRET'}

The same commands also can be run on a table reference. Suppose you had a reference
t to table 't1', the corresponding command would be:

  hbase> t.put 'r1', 'c1', 'value', ts1, {ATTRIBUTES=>{'mykey'=>'myvalue'}}
复制代码

    在HBase 下,如果输入内容错了,使用回退键是不管用的,必须使用Ctrl+回退键才行。

  3)、创建表、插入数据、查询数据

复制代码
进入hbase shell console
    $HBASE_HOME/bin/hbase shell
如果有kerberos认证,需要事先使用相应的keytab进行一下认证(使用kinit命令),认证成功之后再使用hbase shell进入可以使用whoami命令可查看当前用户
    hbase(main)> whoami
表的管理
1)查看有哪些表
    hbase(main)> list
2)创建表

    # 语法:create <table>, {NAME => <family>, VERSIONS => <VERSIONS>}
    # 例如:创建表t1,有两个family name:f1,f2,且版本数均为2
    hbase(main)> create 't1',{NAME => 'f1', VERSIONS => 2},{NAME => 'f2', VERSIONS => 2}
3)删除表
    分两步:首先disable,然后drop
    例如:删除表t1

    hbase(main)> disable 't1'
    hbase(main)> drop 't1'
4)查看表的结构

    # 语法:describe <table>
    # 例如:查看表t1的结构
    hbase(main)> describe 't1'
5)修改表结构
    修改表结构必须先disable

    # 语法:alter 't1', {NAME => 'f1'}, {NAME => 'f2', METHOD => 'delete'}
    # 例如:修改表test1的cf的TTL为180天
    hbase(main)> disable 'test1'
    hbase(main)> alter 'test1',{NAME=>'body',TTL=>'15552000'},{NAME=>'meta', TTL=>'15552000'}
    hbase(main)> enable 'test1'
权限管理
1)分配权限
    # 语法 : grant <user> <permissions> <table> <column family> <column qualifier> 参数后面用逗号分隔
    # 权限用五个字母表示: "RWXCA".
    # READ('R'), WRITE('W'), EXEC('X'), CREATE('C'), ADMIN('A')
    # 例如,给用户‘test'分配对表t1有读写的权限,
    hbase(main)> grant 'test','RW','t1'
2)查看权限

    # 语法:user_permission <table>
    # 例如,查看表t1的权限列表
    hbase(main)> user_permission 't1'
3)收回权限

    # 与分配权限类似,语法:revoke <user> <table> <column family> <column qualifier>
    # 例如,收回test用户在表t1上的权限
    hbase(main)> revoke 'test','t1'
表数据的增删改查
1)添加数据
    # 语法:put <table>,<rowkey>,<family:column>,<value>,<timestamp>
    # 例如:给表t1的添加一行记录:rowkey是rowkey001,family name:f1,column name:col1,value:value01,timestamp:系统默认
    hbase(main)> put 't1','rowkey001','f1:col1','value01'
    用法比较单一。
2)查询数据
  a)查询某行记录

    # 语法:get <table>,<rowkey>,[<family:column>,....]
    # 例如:查询表t1,rowkey001中的f1下的col1的值
    hbase(main)> get 't1','rowkey001', 'f1:col1'
    # 或者:
    hbase(main)> get 't1','rowkey001', {COLUMN=>'f1:col1'}
    # 查询表t1,rowke002中的f1下的所有列值
    hbase(main)> get 't1','rowkey001'
  b)扫描表

    # 语法:scan <table>, {COLUMNS => [ <family:column>,.... ], LIMIT => num}
    # 另外,还可以添加STARTROW、TIMERANGE和FITLER等高级功能
    # 例如:扫描表t1的前5条数据
    hbase(main)> scan 't1',{LIMIT=>5}
  c)查询表中的数据行数

    # 语法:count <table>, {INTERVAL => intervalNum, CACHE => cacheNum}
    # INTERVAL设置多少行显示一次及对应的rowkey,默认1000;CACHE每次去取的缓存区大小,默认是10,调整该参数可提高查询速度
    # 例如,查询表t1中的行数,每100条显示一次,缓存区为500
    hbase(main)> count 't1', {INTERVAL => 100, CACHE => 500}
3)删除数据
  a )删除行中的某个列值

    # 语法:delete <table>, <rowkey>,  <family:column> , <timestamp>,必须指定列名
    # 例如:删除表t1,rowkey001中的f1:col1的数据
    hbase(main)> delete 't1','rowkey001','f1:col1'
    注:将删除改行f1:col1列所有版本的数据
  b )删除行

    # 语法:deleteall <table>, <rowkey>,  <family:column> , <timestamp>,可以不指定列名,删除整行数据
    # 例如:删除表t1,rowk001的数据
    hbase(main)> deleteall 't1','rowkey001'
  c)删除表中的所有数据

    # 语法: truncate <table>
    # 其具体过程是:disable table -> drop table -> create table
    # 例如:删除表t1的所有数据
    hbase(main)> truncate 't1'
Region管理
1)移动region
    # 语法:move 'encodeRegionName', 'ServerName'
    # encodeRegionName指的regioName后面的编码,ServerName指的是master-status的Region Servers列表
    # 示例
    hbase(main)>move '4343995a58be8e5bbc739af1e91cd72d', 'db-41.xxx.xxx.org,60020,1390274516739'
2)开启/关闭region

    # 语法:balance_switch true|false
    hbase(main)> balance_switch
3)手动split

    # 语法:split 'regionName', 'splitKey'
4)手动触发major compaction

    #语法:
    #Compact all regions in a table:
    #hbase> major_compact 't1'
    #Compact an entire region:
    #hbase> major_compact 'r1'
    #Compact a single column family within a region:
    #hbase> major_compact 'r1', 'c1'
    #Compact a single column family within a table:
    #hbase> major_compact 't1', 'c1'
配置管理及节点重启
1)修改hdfs配置
    hdfs配置位置:/etc/hadoop/conf
    # 同步hdfs配置
    cat /home/hadoop/slaves|xargs -i -t scp /etc/hadoop/conf/hdfs-site.xml hadoop@{}:/etc/hadoop/conf/hdfs-site.xml
    #关闭:
    cat /home/hadoop/slaves|xargs -i -t ssh hadoop@{} "sudo /home/hadoop/cdh4/hadoop-2.0.0-cdh4.2.1/sbin/hadoop-daemon.sh --config /etc/hadoop/conf stop datanode"
    #启动:
    cat /home/hadoop/slaves|xargs -i -t ssh hadoop@{} "sudo /home/hadoop/cdh4/hadoop-2.0.0-cdh4.2.1/sbin/hadoop-daemon.sh --config /etc/hadoop/conf start datanode"
2)修改hbase配置
    hbase配置位置:

    # 同步hbase配置
    cat /home/hadoop/hbase/conf/regionservers|xargs -i -t scp /home/hadoop/hbase/conf/hbase-site.xml hadoop@{}:/home/hadoop/hbase/conf/hbase-site.xml
 
    # graceful重启
    cd ~/hbase
    bin/graceful_stop.sh --restart --reload --debug inspurXXX.xxx.xxx.org
复制代码

 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值