32、Docker Swarm创建与应用部署指南

Docker Swarm创建与应用部署指南

1. 创建高可用Docker Swarm

在node1节点上,可将node2和node3提升为管理器节点,使Swarm具备高可用性:

$ docker node promote node2 node3

输出结果如下:

Node node2 promoted to a manager in the swarm.
Node node3 promoted to a manager in the swarm.

至此,我们创建了一个具有三个管理器节点(形成Raft共识组)和两个工作节点的高可用Docker Swarm,可接受工作负载。

2. 在云端创建Docker Swarm

若要创建可用于生产环境的Swarm,可在云端(如AWS)创建。以下是手动通过AWS控制台创建Swarm的步骤:
1. 登录AWS账户,若没有则创建一个免费账户。
2. 创建AWS安全组(SG),命名为 aws-docker-demo-sg
1. 导航到默认VPC。
2. 选择左侧的“安全组”。
3. 点击“创建安全组”按钮。
4. 将SG命名为 aws-docker-demo-sg ,并添加描述,如“A SG for our Docker demo”。
5. 点击“创建安全组”按钮。
6.

使用雅可比椭圆函数为Reissner平面有限应变梁提供封闭形式解(Matlab代码实现)内容概要:本文介绍了如何使用雅可比椭圆函数为Reissner平面有限应变梁问题提供封闭形式的解析解,并结合Matlab代码实现该求解过程。该方法能够精确描述梁在大变形条件下的非线性力学行为,适用于几何非线性强、传统线性理论失效的工程场景。文中详细阐述了数学建模过程,包括基本假设、控制方程推导以及利用雅可比椭圆函数进行积分求解的技术路线,最后通过Matlab编程验证了解的准确性有效性。; 适合人群:具备一定固体力学、非线性结构分析基础,熟悉Matlab编程的研究生、博士生及科研人员,尤其适合从事结构力学、航空航天、土木工程等领域中大变形问题研究的专业人士; 使用场景及目标:① 掌握Reissner梁理论在有限应变条件下的数学建模方法;② 学习雅可比椭圆函数在非线性微分方程求解中的实际应用技巧;③ 借助Matlab实现复杂力学问题的符号计算数值验证,提升理论仿真结合能力; 阅读建议:建议读者在学习前复习弹性力学非线性梁理论基础知识,重点关注控制方程的推导逻辑边界条件的处理方式,同时动手运行并调试所提供的Matlab代码,深入理解椭圆函数库的调用方法结果可视化流程,以达到理论实践深度融合的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值