http://acm.hdu.edu.cn/showproblem.php?pid=2082
Problem Description
假设有x1个字母A, x2个字母B,..... x26个字母Z,同时假设字母A的价值为1,字母B的价值为2,..... 字母Z的价值为26。那么,对于给定的字母,可以找到多少价值<=50的单词呢?单词的价值就是组成一个单词的所有字母的价值之和,比如,单词ACM的价值是1+3+14=18,单词HDU的价值是8+4+21=33。(组成的单词与排列顺序无关,比如ACM与CMA认为是同一个单词)。
Input
输入首先是一个整数N,代表测试实例的个数。
然后包括N行数据,每行包括26个<=20的整数x1,x2,.....x26.
然后包括N行数据,每行包括26个<=20的整数x1,x2,.....x26.
Output
对于每个测试实例,请输出能找到的总价值<=50的单词数,每个实例的输出占一行。
Sample Input
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 2 6 2 10 2 2 5 6 1 0 2 7 0 2 2 7 5 10 6 10 2 10 6 1 9
Sample Output
7 379297
# include <stdio.h>
# include <string.h>
int main()
{
int i,j,k,n,sum,num[27],s[27][51];
scanf("%d",&n);
while(n--)
{
memset(s,0,sizeof(s));
for(i=1;i<=26;i++) scanf("%d",&num[i]);
for(i=0;i<=26;i++) s[i][0]=1;
for(i=1;i<=26;i++)
{
for(j=1;j<=50;j++)
{
for(k=0;k<=num[i]&&j-k*i>=0;k++)
{
s[i][j]+=s[i-1][j-k*i];
}
}
}
for(i=1,sum=0;i<=50;i++) sum+=s[26][i];
printf("%d\n",sum);
}
return 0;
}