python毕设基于用户行为分析的商品推荐系统APP程序+论文

本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。

系统程序文件列表

开题报告内容

研究背景

随着互联网技术的飞速发展,电子商务行业迎来了前所未有的繁荣。电商平台上的商品种类繁多,用户如何在海量商品中快速找到心仪的商品成为了一个巨大的挑战。传统的搜索和分类浏览方式已经难以满足用户的个性化需求。基于用户行为分析的商品推荐系统应运而生,它通过收集和分析用户在平台上的行为数据,如浏览记录、购买历史、评价信息等,构建用户画像,进而为用户提供个性化的商品推荐。这种推荐方式不仅提高了用户的购物体验,还促进了商品的销售,为电商平台带来了巨大的商业价值。

意义

基于用户行为分析的商品推荐系统的研究与应用,对于提升电商平台的用户满意度、增强用户粘性、提高商品销售转化率等方面具有重要意义。该系统能够深入挖掘用户的潜在需求,为用户推荐符合其兴趣和偏好的商品,提升用户的购物体验和满意度。同时,通过精准推荐,电商平台能够将合适的商品推送给潜在用户,提高商品的销售转化率,增加平台的收入。此外,该系统还能够为电商平台的运营提供数据支持,帮助平台优化商品结构、提升用户体验,从而推动平台的长期发展。

目的

本研究旨在设计并实现一个基于用户行为分析的商品推荐系统,以实现对用户个性化需求的精准捕捉和满足。通过该系统,电商平台能够实时收集和分析用户在平台上的行为数据,构建用户画像,进而为用户推荐符合其兴趣和偏好的商品。我们期望通过这一系统的开发,能够提高电商平台的用户满意度和商品销售转化率,为电商平台的长期发展提供有力支持。

研究内容

本研究将围绕基于用户行为分析的商品推荐系统的设计与实现展开,研究内容主要包括以下几个方面:首先,根据电商平台的实际需求,设计系统的功能模块,包括用户模块、商品分类模块、商品信息模块以及推荐算法模块等。其中,用户模块负责用户信息的注册、登录、管理等功能;商品分类模块对商品进行分类管理,方便用户浏览和搜索;商品信息模块展示商品的详细信息,包括价格、图片、评价等;推荐算法模块则是系统的核心,通过收集和分析用户在平台上的行为数据,构建用户画像,并运用协同过滤、基于内容的推荐等算法,为用户推荐符合其兴趣和偏好的商品。其次,设计并实现系统的数据库结构,确保数据的存储和查询效率。同时,还需要考虑系统的安全性和稳定性,确保用户数据的安全和系统的正常运行。最后,进行系统测试与优化,收集用户反馈,不断完善系统功能,提升用户体验。

进度安排:

2023年10月1日——2023年10月31日完成选题,收集资料,需求分析

2023年11月1日——2023年12月28日关键技术分析,总体设计

2024年1月3日——2024年2月28日详细设计与实现、撰写论文初稿

2024年3月1日——2024年3月15日系统测试与运行,撰写论文二稿

2024年3月16日——2024年4月1日性能分析并按要求修改论文,完成终稿

2024年4月初系统能正常运行,论文终稿完成,准备答辩

参考文献:

[1]   张珩. "Python的计算机软件应用技术探讨"[J]. 电脑知识与技术, 2020, 16(32): 96-97+102.

[2]   虞菊花, 乔虹. "基于Python的Web页面自动登录工具设计与实现"[J]. 安徽电子信息职业技术学院学报, 2023, 22 (03): 19-22+28.

[3]   曾浩. "基于Python的Web开发框架研究"[J]. 广西轻工业, 2011, 27(08): 124-125+176.

[4]   王春明. "基于Unittest的Python测试系统"[J]. 数字通信世界, 2023, (03): 66-69.

[5]   Guttu Sai Abhishek, Harshad Ingole et al. "SPEAR: Semi-supervised Data Programming in Python." Conference on Empirical Methods in Natural Language Processing (2021).

[6]   蔡迪阳. "基于Python的网页信息爬取技术分析"[J]. 科技资讯, 2023, 21 (13): 31-34.

[7]   朱向阳. "高中信息技术python项目式教学路径分析"[J]. 高考, 2023, (24): 126-128.

[8]   T. Oliphant. "Python for Scientific Computing." Computing in science & engineering (Print) (2007).

[9]   陈佳佳, 邱晓荣, 熊宇昊, 段莉华. "基于Python的人脸识别技术研究"[J]. 电脑知识与技术, 2023, 19 (08): 34-36+39.

[10]  Fabian Pedregosa, G. Varoquaux et al. "Scikit-learn: Machine Learning in Python." Journal of machine learning research(2011).

[11]  王国强, 张贝克. "基于Python的嵌入式脚本研究"[J]. 计算机应用与软件, 2010, 27(03): 107-109.

[12]  唐文军, 隆承志. "基于Python的聚焦网络爬虫的设计与实现"[J]. 计算机与数字工程, 2023, 51 (04): 845-849.

以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!

系统技术栈:

前端技术栈

Vue.js:是一个用于构建用户界面的渐进式JavaScript框架。允许开发者通过声明式渲染来创建动态的单页应用(SPA)。

HTML (HyperText Markup Language):用于创建网页的标准标记语言。定义网页的结构和内容,如段落、链接、图片等。

CSS (Cascading Style Sheets):用于描述HTML文档的样式和布局。可以控制字体、颜色、间距、布局等视觉表现。

JavaScript:一种轻量级,解释型或即时编译型的编程语言。通常用于网页上实现交互效果,如表单验证、动态内容更新等。与Vue.js结合,可以创建复杂的用户界面。

后端技术栈

Python3.7.7:高级编程语言,以其清晰的语法和代码可读性而闻名。广泛用于后端开发、科学计算、数据分析等领域。

Flask:是一个用Python编写的轻量级Web应用框架。它提供了一组工具和功能来快速开发Web应用。特点包括简单性、灵活性和易于扩展。

MySQL:是一个关系型数据库管理系统(RDBMS),广泛用于存储、检索和管理数据。支持SQL(结构化查询语言),用于执行数据库操作,如查询、更新、插入和删除数据。

开发工具

PyCharm:是由JetBrains开发的一个集成开发环境(IDE),专为Python开发设计。

提供代码自动完成、项目管理、调试和测试支持等功能。社区版是免费的,适合个人开发者和学习者使用。

开发流程:

•      首先,使用HTML、CSS和JavaScript结合Vue.js构建前端界面,实现用户交互和动态内容展示。接着,在后端使用Python语言结合Flask框架开发RESTful API,处理前端请求并提供业务逻辑。同时,利用MySQL数据库进行数据存储和查询,确保数据的持久化和一致性。开发过程中,通过PyCharm IDE进行代码编写、调试和项目管理,确保开发效率和代码质量。最后,通过持续集成和测试,确保应用的稳定性和可靠性,完成开发后进行部署,使应用可以在服务器上运行并对外提供服务。整个流程注重模块化设计和分层架构,以便于维护和扩展。

使用者指南

理解基本概念:了解HTML、CSS和JavaScript的基本概念是非常重要的。

学习Vue.js:通过官方文档或在线课程学习Vue.js的基本用法和生态系统。

掌握Python:学习Python语言的基础,包括数据类型、控制流、函数和模块。

熟悉Flask框架:通过阅读Flask文档和教程来学习如何构建Web应用。

数据库知识:了解SQL语言和数据库设计原则,学习如何使用MySQL进行数据存储和管理。

实践项目:通过实际项目来应用所学知识,这是提高技能的最佳方式。

程序界面:

第一阶段:2024年1月11日-2024年3月9日,查阅文献资料,完成开题报告;

第二阶段:2024年3月10日-2024年3月31日,完成概要设计和详细设计;

第三阶段:2024年4月1日-2024年4月30日,编制软件;

第四阶段:2024年5月1日-2024年5月20日,测试各功能模块以及系统测试;

第五阶段:2024年5月21日-2024年6月1日,撰写论文。

源码、数据库获取↓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值