1.小易有一些彩色的砖块。每种颜色由一个大写字母表示。各个颜色砖块看起来都完全一样。现在有一个给定的字符串s,s中每个字符代表小易的某个砖块的颜色。小易想把他所有的砖块排成一行。如果最多存在一对不同颜色的相邻砖块,那么这行砖块就很漂亮的。请你帮助小易计算有多少种方式将他所有砖块排成漂亮的一行。(如果两种方式所对应的砖块颜色序列是相同的,那么认为这两种方式是一样的。)
例如: s = "ABAB",那么小易有六种排列的结果:"AABB","ABAB","ABBA","BAAB","BABA","BBAA"
其中只有"AABB"和"BBAA"满足最多只有一对不同颜色的相邻砖块。
解析:
思想就是看字符串里有几种字符,超过两种就不可能只有一对相邻的不同字符,有两种字符就是两种正确的排列,有一种字符自然就是一种正确的排列。
s = raw_input()
if len(set(s)) == 2:
print 2
elif len(set(s)) == 1:
print 1
else:
print 0
2.如果一个数列S满足对于所有的合法的i,都有S[i + 1] = S[i] + d, 这里的d也可以是负数和零,我们就称数列S为等差数列。
小易现在有一个长度为n的数列x,小易想把x变为一个等差数列。小易允许在数列上做交换任意两个位置的数值的操作,并且交换操作允许交换多次。但是有些数列通过交换还是不能变成等差数列,小易需要判别一个数列是否能通过交换操作变成等差数列.
def isOK(n,nums):
nums = sorted(nums)
Max = nums[1]-nums[0]
for i in range(2,n):
if nums[i]-nums[i-1]!=Max:
return False
return True
if __name__ == '__main__':
n=raw_input()
n= int(n)
nums = map(int,raw_input().split())
if(isOK(n,nums)):
print("ok")
else:
print("No")
3.如果一个01串任意两个相邻位置的字符都是不一样的,我们就叫这个01串为交错01串。例如: "1","10101","0101010"都是交错01串。小易现在有一个01串s,小易想找出一个最长的连续子串,并且这个子串是一个交错01串。小易需要你帮帮忙求出最长的这样的子串的长度是多少。
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 22 13:33:33 2017
@author: lenovo
"""
def findNumber(nums):
lens = len(nums)
length = 0
for i in nums:
i = int(i)
Max = 0
if len(set(nums)) == 0:
return 0
for i in range(1,lens):
if nums[i]!=nums[i-1]:
length=length+1
else:
length = 0
if length > Max:
Max = length
return Max+1
if __name__ == '__main__':
num=raw_input()
result=findNumber(num)
print(result)
4.小易有一个长度为n的整数序列,a_1,...,a_n。然后考虑在一个空序列b上进行n次以下操作:1、将a_i放入b序列的末尾
2、逆置b序列
小易需要你计算输出操作n次之后的b序列。
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 22 15:11:18 2017
@author: lenovo
"""
n=raw_input()
n=int(n)
m=raw_input()
odd = []
even = []
arr=map(int,m.split())
length = len(arr)
for i in range(1,length+1):
if i%2 == 1:
odd.append(arr[i-1])
else:
even.append(arr[i-1])
result = []
"""
if n%2 ==0:
even.reverse()
for i in range(0,len(even)):
result.append(even[i])
result.append(odd[i])
else:
odd.reverse()
for i in range(0,len(odd)):
result.append(even[i])
result.append(odd[i])
"""
if n%2 == 0:
"""
将两个list合成一个list,可以用+,也可以使用extend函数。l1.extend(l2)
"""
even.reverse()
result=result+even
result=result+odd
else:
odd.reverse()
result=result+odd
result=result+even
for i in result:
print i ,
5.小易为了向他的父母表现他已经长大独立了,他决定搬出去自己居住一段时间。一个人生活增加了许多花费: 小易每天必须吃一个水果并且需要每天支付x元的房屋租金。当前小易手中已经有f个水果和d元钱,小易也能去商店购买一些水果,商店每个水果售卖p元。小易为了表现他独立生活的能力,希望能独立生活的时间越长越好,小易希望你来帮他计算一下他最多能独立生活多少天。
输入描述:
输入包括一行,四个整数x, f, d, p(1 ≤ x,f,d,p ≤ 2 * 10^9),以空格分割
输出描述:
输出一个整数, 表示小易最多能独立生活多少天。
输入
3 5 100 10
输出
11
G=input().split()
zu=int(G[0])
shi=int(G[1])
qian=int(G[2])
jia=int(G[3])
tian=0
if shi>=qian/zu: #住完都不需要买水果
tian =int(qian/zu)
else:
tian=shi
tian=tian + (qian-shi*zu)//(jia+zu)
print(int(tian))
6.小易将n个棋子摆放在一张无限大的棋盘上。第i个棋子放在第x[i]行y[i]列。同一个格子允许放置多个棋子。每一次操作小易可以把一个棋子拿起并将其移动到原格子的上、下、左、右的任意一个格子中。小易想知道要让棋盘上出现有一个格子中至少有i(1 ≤ i ≤ n)个棋子所需要的最少操作次数.
输入描述:
输入包括三行,第一行一个整数n(1 ≤ n ≤ 50),表示棋子的个数 第二行为n个棋子的横坐标x[i](1 ≤ x[i] ≤ 10^9) 第三行为n个棋子的纵坐标y[i](1 ≤ y[i] ≤ 10^9)
输出描述:
输出n个整数,第i个表示棋盘上有一个格子至少有i个棋子所需要的操作数,以空格分割。行末无空格 如样例所示: 对于1个棋子: 不需要操作 对于2个棋子: 将前两个棋子放在(1, 1)中 对于3个棋子: 将前三个棋子放在(2, 1)中 对于4个棋子: 将所有棋子都放在(3, 1)中
输入
4 1 2 4 9 1 1 1 1
输出
0 1 3 10
"""
求,让某一个格子(x0,y0)上有k个棋子所需要的最少操作次数
1. 求出所有棋子到某一点的曼哈顿距离,得到一个n维vector
2. 将vector从小到大排序
3. 对vector中第0个元素到第k - 1个元素求和,即前k个元素,因为第i个,需要放置i个棋子
"""
a=raw_input()
x=[int(i) for i in raw_input().split(' ')]
y=[int(j) for j in raw_input().split(' ')]
def calculatedistance(pinit1x,point1k,point2y,point2k):
return abs(pinit1x-point1k)+abs(point2y-point2k)
ans=[6553000000]*100
for i in range(len(x)):
for j in range(len(y)):
lingshi=0
tmp=[]
##计算所有候选的可能情况的结果
for k in range(len(y)):
tmp.append(calculatedistance(x[i],x[k],y[j],y[k]))
tmp.sort()
#对vector中第0个元素到第k - 1个元素求和
for k in range(len(y)):
lingshi=lingshi+tmp[k]
ans[k]=min(ans[k],lingshi)
for i in range(len(x)):
print ans[i],