3、无线Mesh网络:从基础到安全的全面解析

无线Mesh网络:从基础到安全的全面解析

1. 无线Mesh网络接口与信道

在无线Mesh网络(WMNs)中,接口会在短时间内动态分配。分配给固定接口的信道称为固定信道,分配给可切换接口的信道称为可切换信道。每个节点都同时拥有固定信道和可切换信道。在流发起时,每个节点会根据下一跳邻居的固定信道,在可切换接口中找到相应信道来传输数据。一旦可切换接口切换到某个信道,对于该流的后续数据包,就无需再切换信道,除非另一个流需要在可切换接口上进行信道切换。

2. 路由相关内容

2.1 路由协议概述

文献中为自组织网络提出了众多路由协议。由于WMNs是多跳网络,为自组织网络设计的协议在WMNs中也能很好地工作。这些协议的主要目标是在节点移动导致路径中断时,能够快速适应路径变化。当前WMNs的部署采用了一些为自组织网络提出的路由协议,如AODV(Ad hoc On - Demand Distance Vector)、DSR(Dynamic Source Routing)和TBRPF(Topology Broadcast based on Reverse Path Forwarding)。

不过,WMNs中的网状路由器移动性极小且没有功率限制,而客户端则是移动的且功率有限。在为WMNs开发高效路由协议时,需要考虑这种差异。由于WMNs中的链路寿命较长,因此主要关注的是找到可靠且高吞吐量的路径,而不是像自组织网络那样快速适应链路故障。

2.2 路由指标

2.2.1 跳数指标的局限性

许多自组织路由协议如AODV和DSR使用跳数作为路由指标,但这并不适合WMNs,原因如下:
-

本项目聚焦于运用卷积神经网络技术进行人体姿态与动作的识别分析。核心程序模块包含四个组成部分:姿态检测模块、训练数据采集模块、模型训练模块以及主控程序模块。 在姿态检测模块中,构建了一个姿态识别类,该类整合了两种关键方法。第一种方法通过调用现成的骨骼点识别接口处理输入图像,获取人体关键节点信息并将识别结果存储在特定变量中;第二种方法则利用可视化工具包,将检测到的骨骼节点在图像中进行标注并建立连接关系。 训练数据采集模块实现了图像存储功能,该模块通过调用图像处理库的存储接口,将采集到的样本图像保存至本地存储设备,为后续模型训练阶段提供数据支持。 模型训练模块定义了完整的卷积神经网络训练流程。该模块首先调用数据采集模块保存的图像数据集,通过多层级卷积运算提取图像特征,采用反向传播算法优化网络参数,最终生成可用于动作分类的识别模型。整个训练过程包含数据预处理、网络结构配置、损失函数计算和参数优化等标准步骤。 项目采用模块化设计理念,各功能组件之间保持高度独立性,通过清晰的接口定义实现数据交互。技术实现方面,结合了深度学习框架与计算机视觉库,构建了从数据采集到模型训练的全流程解决方案。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值