几何分布及其期望计算

几何分布

以抛硬币为例:抛到正面则继续抛,抛到不是正面为止,记录这时抛硬币的次数X。假设出现正面的概率为 p p p,那么非正面概率为 1 − p 1-p 1p。发生抛k次事件的概率为: P { X = k } = p k − 1 ( 1 − p ) P\{X=k\}=p^{k-1}(1-p) P{X=k}=pk1(1p)

求几何分布的期望

根据离散概率分布的期望公式计算 E [ X ] = ∑ ζ P { X = ζ } E[X]=\sum \zeta P\{X=\zeta\} E[X]=ζP{X=ζ}得到几何分布的期望为 E [ X ] = ∑ k = 1 ∞ k P { X = k } = ∑ k = 1 ∞ k p k − 1 ( 1 − p ) = 1 − p p ∑ k = 1 ∞ k p k E[X]=\sum_{k=1}^{\infty} kP\{X=k\}=\sum_{k=1}^{\infty} kp^{k-1}(1-p)=\frac{1-p}{p}\sum_{k=1}^{\infty} kp^k E[X]=k=1kP{X=k}=k=1kpk1(1p)=p1pk=1kpk下面来计算后面求和部分,先来计算有限次求和,再对其求极限 A = ∑ k = 1 n k p k A=\sum_{k=1}^{n} kp^k A=k=1nkpk构造错位项 p A = ∑ k = 1 n k p k + 1 pA=\sum_{k=1}^{n} kp^{k+1} pA=k=1nkpk+1两式相减得 ( 1 − p ) A = ∑ k = 1 n p k − n p n + 1 = p ( 1 − p n ) 1 − p − n p n + 1 (1-p)A=\sum_{k=1}^{n} p^{k}-np^{n+1}=\frac{p(1-p^n)}{1-p}-np^{n+1} (1p)A=k=1npknpn+1=1pp(1pn)npn+1所以得到 A = p ( 1 − p n ) ( 1 − p ) 2 − n p n + 1 1 − p A=\frac{p(1-p^n)}{(1-p)^2}-\frac{np^{n+1}}{1-p} A=(1p)2p(1pn)1pnpn+1对有限求和取极限 ∑ k = 1 ∞ k p k = lim ⁡ n → ∞ p ( 1 − p n ) ( 1 − p ) 2 − n p n + 1 1 − p = p ( 1 − p ) 2 \sum_{k=1}^{\infty} kp^k=\lim_{n\to \infty}\frac{p(1-p^n)}{(1-p)^2}-\frac{np^{n+1}}{1-p}=\frac{p}{(1-p)^2} k=1kpk=nlim(1p)2p(1pn)1pnpn+1=(1p)2p计算得到几何分布的期望 E [ X ] = 1 − p p p ( 1 − p ) 2 = 1 1 − p E[X]=\frac{1-p}{p} \frac{p}{(1-p)^2}=\frac{1}{1-p} E[X]=p1p(1p)2p=1p1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朽木为萤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值