MySQL优化
- 1.优化索引、SQL语句、分析慢查询;
- 2.设计表的时候严格按照数据库的设计范式来设计数据库;
- 3.我们还可以将我们的业务架构进行缓存,静态化和分布式;
- 4.不用全文索引,使用Xunsearch,ES或者云服务器上的索引;
- 5.如果效率还是不够好,可以采用主从方式将数据读写分离;
- 6.可以加上memcached缓存,将经常被访问到但不经常变化的数据放至memcached缓存服务器里面,这样的话能够节约磁盘I/O;
- 7.还可以优化硬件,在硬件层面,我们可以使用更好的一些硬盘(固态硬盘),使用一些磁盘阵列技术(raid0,raid1,raid5)
- raid0:最简单的(两块硬件相加100G+100G=200G)
- raid1:镜像卷,把同样的数据下两份。可以随即从A/B里面读取,效率更高,硬盘坏了一块数据也不会丢失;
- raid5:3块硬盘,坏了一块,另外两块也能工作。 - 8.如果还是慢,先不要切分表,可以使用MySQL内部自带的表分区技术,将数据分成不同的文件,这样能够让磁盘在读取的时候效率更高;
- 9.可以做垂直分表,将不经常用读的数据放到另外一个表里去(节约磁盘I/O);
- 10.数据量特别大,我们优化起来会很困难,这时可以使用数据库中间件的方式,将数据进行分库分表分机器。(原理:数据路由);
- 11.此外,还可以采用一些更快的存储方式,例如NoSQL存储一些我们需要经常访问到的数据(数据库取出来后,再到NoSQL中取出一些其他数据);
- 12.此外还有一些表引擎选择,参数优化还有些相关的小技巧都是优化MySQL的方式;
慢查询:指超过指定时间的SQL语句查询,分析MySQL语句查询性能的方法除了使explain输出执行计划,还可以让MySQL记录下查询超过指定时间的语句。
Xunsearch:免费开源的专业全文检索解决方案,旨在帮助一般开发者针对既有的海量数据快速而方便地建立自己的全文搜索引擎。全文检索可以帮助降低服务器的搜索负荷、极大程度的提高搜索速度和用户体验。
ElasticSearch:一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。
表引擎 | 优点 | 不足 |
---|---|---|
ISAM | 读取速度快,且不占用大量内存和存储资源 | 不支持事务,不能容错;如果硬盘崩溃了,数据文件就无法恢复(常备份) |
MYISAM | ISAM扩展格式和缺省数据引擎,提供了ISAM里所没有的索引和字段管理的大量功能,MYISAM使用表锁 | 不支持事务,不支持外键 |
INNODB和BERKLEY(BDB) | 支持事务,支持外键 | 数据读取较慢 |
HEAP | 允许只驻留在内存里的临时表格,因此比ISAM和MYISAM都快 | 管理的数据都是不稳定的,如果在关机前数据没保存,那么所有的数据都会丢失(表格用完之后就删除表格);需要select表达式来选择和操控数据时非常有用 |
范式 | 特点 |
---|---|
第一范式(1NF) | 具有原子性,即列的信息不可再分【列唯一】 |
第二范式(2NF) | 以第一范式为基础,数据表的每一个实例或者行,必须要唯一的区分(每行上建主键)【行唯一】 |
第三范式(3NF) | 基于第二范式,一个数据库,不包含已在其他表中的非主键列 |
- 扩:
手机端不支持session和cookie要实现用户登录怎么办?
1.在协议处使用Restful;
2.换token(类似于微信开发时使用的appid );