- 博客(73)
- 收藏
- 关注
原创 【行云流水AI笔记】根据上面泳道图,请问如果加入强化学习,在哪些模块添加比较好,返回添加后的泳道图。
在现有架构中加入强化学习(RL)模块,最佳切入点是在BaseAgent和BaseLLM之间添加 RL 策略控制器。以下是修改后的 UML 泳道图建议和关键改造点:fill:#333;stroke:1;fill:none;important;important;important;important;important;important;important;important;important;important;important;important;important;important;
2025-06-11 18:03:44
560
原创 快速熟悉公司的服务器开发环境需要系统
快速熟悉的关键在于“主动”和“动手”。充分利用入职初期的时间窗口,积极索取文档和权限,严格按照指引搭建环境,勇敢提问,并在小的、安全的改动上实践整个开发部署流程。持续记录、总结和沟通,你会很快从陌生走向熟悉,进而高效地投入到开发工作中。祝你顺利融入新环境!💪🏻快速熟悉公司的服务器开发环境是新入职或转岗开发者的关键任务,这需要系统性地了解环境架构、工具链和协作流程。一、从全局视角切入:理解环境架构与组件。
2025-06-11 16:29:28
380
原创 快速熟悉公司的服务器开发环境需要系统
快速熟悉的关键在于“主动”和“动手”。充分利用入职初期的时间窗口,积极索取文档和权限,严格按照指引搭建环境,勇敢提问,并在小的、安全的改动上实践整个开发部署流程。持续记录、总结和沟通,你会很快从陌生走向熟悉,进而高效地投入到开发工作中。祝你顺利融入新环境!💪🏻快速熟悉公司的服务器开发环境是新入职或转岗开发者的关键任务,这需要系统性地了解环境架构、工具链和协作流程。一、从全局视角切入:理解环境架构与组件。
2025-06-11 16:28:32
522
原创 KubeSphere部署Python项目详细步骤
KubeSphere是一个基于Kubernetes的容器平台,它提供了可视化界面和丰富的功能,使应用部署更加简单。在KubeSphere或Kubernetes环境中完成Python应用部署后,需要系统性地进行测试以确保应用功能正常、性能达标且安全可靠。如果遇到更复杂的问题,建议查阅KubeSphere和Kubernetes的官方文档,或在社区寻求帮助。通过以上测试流程,可全面验证Python应用在KubeSphere环境中的稳定性、性能和安全性,确保应用可安全地投入生产使用。
2025-06-11 16:27:58
549
原创 【行云流水AI笔记】游戏里面的强化学习使用场景
强化学习在游戏中的应用已从早期的棋类博弈扩展到现代复杂游戏的全流程优化,以下是结合最新技术进展的核心应用场景及典型案例:强化学习正从“游戏AI”向“游戏智能”演进,其核心价值不仅在于提升游戏体验,更在于为元宇宙、自动驾驶等领域提供可迁移的决策框架。未来,随着算法优化与硬件升级,强化学习或将彻底重构游戏设计范式,实现“AI主导、玩家共创”的新型游戏生态。以下是游戏中强化学习场景与算法的深度对应关系,结合最新技术进展和具体实现案例:数据稀疏性处理:计算资源优化:策略泛化能力提升:边缘计算与实时优化:神经符号系统
2025-06-11 16:27:27
566
原创 新入职算法工程师,如何有主人翁意识,把自己当成不再是一个“螺丝钉”,要以更上层的思想,本质是怎么做好一件事(这个事是什么无所谓)【行云流水AI笔记】
螺丝钉的工作是“按图纸组装零件”,而主人翁的角色是“参与设计图纸,并确保整台机器高效运转”。
2025-06-11 15:05:36
232
1
原创 新到一个互联网公司做算法开发,需要熟悉哪些后,再进行开发比较AIAI笔记】
通过系统掌握上述内容,可快速融入团队并产出高质量代码。建议在入职初期主动沟通,充分利用内部资源(如导师制、技术文档),同时保持对行业技术动态的敏感度,持续提升算法工程化能力。
2025-06-10 10:40:07
616
原创 apt 安装 postgres vector插件
- 确保 PostgreSQL 版本与 pgvector 插件版本兼容。例如,pgvector 0.7.0 通常与 PostgreSQL 15 及以下版本兼容。—通过以上步骤,您可以成功安装 PostgreSQL 并配置 pgvector 插件。—### 二、安装 pgvector 插件1.: - 如果编译过程中出现错误,可能需要安装其他依赖,例如。包含编译 PostgreSQL 扩展所需的头文件。查看已安装的扩展列表,确认。—### 三、验证安装1.—### 四、注意事项1.
2025-05-15 16:58:15
220
原创 error: could not create ‘build\bdist.win-amd64\wheel\.\vllm\model_executor\layers\fused_moe\configs
cd vllm。
2025-05-15 08:39:29
336
原创 mcp和API区别
1. 核心目标与设计理念- MCP: 旨在为AI模型提供动态上下文感知的统一交互协议,通过标准化方式传递数据及其语义背景,强调数据的动态交互与上下文关联性。— 2. 集成复杂度- MCP: - 统一协议:一次集成即可连接多个工具,减少重复开发。— 3. 适用场景- MCP: 适用于动态、上下文敏感的场景,如AI助手、智能IDE、复杂数据分析等,需实时交互和多工具协同的场景。- API: 更适合静态、规则明确的场景,如传统系统集成、高度受控的功能调用,需精确控制交互逻辑的场景。
2025-04-16 22:27:39
562
原创 假设你有一个 Google 数量级别的用户,你应该如何设计用户管理和用户数据查询。
使用缓存淘汰策略(LRU)和旁路缓存模式(Cache-Aside)。: - RBAC(基于角色)或ABAC(基于属性)模型,支持细粒度权限控制。: - 用户数据按区域分片(如us-east、eu-west),提供低延迟访问。: - 使用游标分页(Cursor-based Pagination)替代OFFSET-LIMIT,避免深分页性能问题。- 存储层:敏感字段(如手机号)使用AES-GCM加密,密钥由KMS管理。(秒级): - 多条件过滤(如邮箱、手机号、时间范围)。- 定期轮换加密密钥。
2025-04-08 19:03:49
720
原创 华为面试,机器学习深度学习知识点:
definit二叉树的最大宽度 Leetcode 662:pythondefinitreturn 0∑j=1nezjezi,其中yi是第i个类别的概率,且∑i=1nyi=1。作用:将输出值转换为概率形式,便于进行分类决策,例如选择概率最大的类别作为预测结果。
2025-04-02 17:31:36
1336
原创 国内外金融数据接口大全
pandas-datareader - 从多个数据源获取经济/金融时间序列,包括谷歌财经,雅虎财经,圣路易斯联储(FRED),OECD, Fama/French,世界银行,欧元区统计局等,是Pandas生态系统的重要组成。alpaca-trade-api - 从Alpaca平台获取股票实时报价和历史数据,并提供交易接口交易美股。yahoo-finance - 从雅虎财经下载股票报价,历史价格,产品信息和财务报表。akshare - 获取中国股票,基金,债券和宏观经济数据。
2025-03-18 07:03:50
472
原创 一台电脑上的API可以被另外一台电脑远程访问的方法 Python代码
首先,用户的问题是关于如何让另一台电脑远程访问本机的API,这可能涉及到两种方法:一种是使用RPyC进行远程调用,另一种是搭建一个HTTP API服务,让其他电脑通过HTTP请求访问。根据搜索结果,网页1详细介绍了RPyC的使用,而网页2到网页5主要讨论了使用requests库调用现有的API,但用户可能需要的是如何暴露自己的API供他人调用。不过,网页1中的RPyC也是一个可行的方案,因为它允许远程调用Python函数,就像本地调用一样。确保代码示例正确,并涵盖服务器和客户端的设置,以及必要的配置说明。
2025-03-10 22:56:05
870
原创 大公司AI部门负责人 需要具备哪些知识技能
通过这些评估方法,可以全面了解AI团队的技术能力,并识别出团队的优势和需要改进的地方。评估AI团队的技术能力是一个多维度的过程,涉及对团队成员的技能、知识、经验和团队整体表现的综合考量。:通过面试、技术测试、代码审查等方式评估团队成员在机器学习、深度学习、自然语言处理、计算机视觉等领域的专业知识。:审查团队过去的项目记录,包括项目的成功率、创新性、影响力以及技术难度。:对团队成员的代码进行审查,评估代码的可读性、可维护性和性能。:评估团队领导者在技术方向选择、团队激励和技术决策方面的能力。
2025-02-24 18:16:49
668
原创 数字人面试
rnn作用循环神经网络(RNN)是一种深度学习模型,特别适用于处理序列数据。以下是RNN的主要作用:序列建模:RNN能够处理任意长度的序列数据,这使得它们在时间序列分析、语音识别、语言模型等任务中非常有用。记忆能力:RNN具有内部状态(记忆),可以用来存储过去的信息。这使得它们能够在当前的任务中使用之前的信息。参数共享:在处理序列的不同时间步时,RNN使用相同的权重,这减少了模型的参数数量,使之更高效。变长输入:与传统的神经网络不同,RNN可以处理不同长度的输入序列,这使得它们在处理实际问题时更加灵活。以
2025-02-20 20:14:36
831
原创 有没有其他技术可以替代本地 RAG?
应用示例:在法律场景中,对于法律条文相关的联想词推荐,设计详细的提示,如 “请结合《中华人民共和国民法典》,给出与‘合同违约’相关的法律术语和处理方式,用逗号分隔”,以此引导模型输出更准确的联想词。比如在推荐 “苹果” 的联想词时,可依据知识图谱明确其在 “水果” 和 “电子产品” 领域的关联信息。微调过程中,模型的参数会根据新的数据进行调整,以适应特定的任务需求。当用户输入商品名称时,模型可以根据微调学习到的知识,推荐相关的商品属性、搭配商品等联想词。
2025-02-19 19:43:48
192
原创 给出方法步骤 挑战解决 用加密和访问控制保护数据隐私。 调架构、参数与用 GPU 加速优化模型性能。 全面测试解决兼容性问题。
剪枝:对 Qwen2 模型进行剪枝操作,去除一些对模型性能影响较小的连接或神经元,减少模型的参数数量,从而提高模型的推理速度。学习率调整:使用学习率调度器(如 torch.optim.lr_scheduler.StepLR)动态调整学习率,在训练初期使用较大的学习率加速收敛,在训练后期使用较小的学习率提高模型的精度。学习率调整:使用学习率调度器(如 torch.optim.lr_scheduler.StepLR)动态调整学习率,在训练初期使用较大的学习率加速收敛,在训练后期使用较小的学习率提高模型的精度。
2025-02-19 19:16:10
659
原创 c++模拟图像特征矩阵和文本特征矩阵,对它们进行简单的对齐操作
这段代码的主要功能是模拟图像特征矩阵和文本特征矩阵,对它们进行简单的对齐操作(求对应元素的平均值),并计算对齐前两个矩阵的余弦相似度。
2025-02-18 13:58:08
420
原创 【无标题】error: Microsoft Visual C++ 14.0 or greater is required. Get it with “Micros
报错解决办法: Microsoft Visual C++ 14.0 or greater is required. Get it with “Microsoft C++ Build Tools“_error: microsoft visual c++ 14.0 or greater is req-CSDN博客。MSVC v143 -VS 2022 C++ x4/x86 生成工…然后,安装“使用C++的桌面开发”并确保安装详细信息的前两项勾选。二、安装:使用C++的桌面开发。使用C++的桌面开发。
2025-02-08 14:19:01
295
原创 statedict = ckpt[CheckPoint.MODEL] ~~~~^^^^^^^^^^^^^^^^^^ KeyError: ‘model‘
【代码】statedict = ckpt[CheckPoint.MODEL] ~~~~^^^^^^^^^^^^^^^^^^ KeyError: ‘model‘
2025-01-16 22:13:15
188
原创 机器视觉面试题PDF
你可以访问该网页,查看这些面试题及回答建议,并将其保存为PDF文件进行学习.• 机器视觉算法岗位常见面试问题含HR问题考察点及参考回答:这个网页提供了25道机器视觉算法岗位的常见面试问题,包括机器视觉的理解及工业自动化中的应用、特征提取的理解及应用、卷积神经网络(CNN)在图像识别中的应用、机器视觉库的使用经验、图像中异常值处理、物体识别问题解决方法、立体视觉的了解等。
2025-01-05 20:48:59
766
原创 【zhilu.space】 转发 程序员应该知道的100件事儿,这八件你要先了解:
如果你选择忽略类似上面的一个错误,对其视而不见,假装一切都没发生,那你就是在背负巨大的风险。“硬件会出错,软件会出错,连监控程序也会出错,我开始思考这个世界上有没有什么东西是不会出错的。每当你想着“先做出来,回头再优化“,却发现又有新的任务让你没法回头时,你便欠下了”技术债“。给你的代码做减肥,要记住,代码是负债,而不是资产,能用8行代码实现的就不要用10行。代码之美,不在于你用了多少复杂的技术,而在于你如何用最简单的方式解决问题。需求背后的意义,就像是女朋友说“我没事”,你最好还是问问她到底怎么了。
2024-12-27 17:07:44
241
原创 先进的多模态专家需要掌握哪些知识和技能课程
好的,让我们来梳理一下。现在,让我们来探讨一些推荐的书籍:• 《人机交互:设计与评估》(“Human-Computer Interaction:Design and Evaluation”)作者:安德鲁·D·安德鲁斯(Andrew D.Andre)这本书为读者提供了 HCI 领域的全面介绍,涵盖了设计和评估方法。• 《感知与设计》(“Sensory and Design”)作者:罗杰·谢泼德(Roger N.Shepard)通过探讨人类的感官系统如何影响设计,本书为创建多模态体验提供了深刻的见解。
2024-12-18 20:07:36
640
原创 先进的多模态专家需要掌握哪些知识和技能
因此,强大的组织和领导能力亦是必不可少的。综上所述,一个高级多模态专家应具备以下关键知识和技能:• 理论基础:深入理解多模态交流的基本原理及其在不同应用中的实际运用。因此,最终答案如下:一个高级多模态专家应具备深入的理论知识,包括多模态交流的基本原理及其在不同应用中的实际运用。强大的项目管理技能,包括组织和领导能力,以及持续学习和适应新技术的能力,对于在该领域保持专业竞争力至关重要。强大的项目管理技能,包括组织和领导能力,以及持续学习和适应新技术的能力,对于在该领域保持专业竞争力至关重要。
2024-12-18 20:01:49
377
原创 我先让llm处理一遍,在给lightrag,转完的文本如果什么都不做,构建的图谱的效果不好,
将PDF转换为TXT是数据治理过程中的第一步,接下来的数据治理工作可能包括数据清洗、格式化、结构化、去重、标准化等多个环节。
2024-12-17 19:31:15
433
原创 【智鹿空间】c++实现了一个简单的链表数据结构 MyList,其中包含基本的 Get 和 Modify 操作,
这段代码实现了一个简单的链表数据结构 ,其中包含基本的 和 操作,并且支持多线程访问。此外,还使用了 技术来管理内存回收,以及 库来进行性能测试。以下是对代码的逐行注释:代码解释Node 结构体:NodeFree 类:MyList 类:MyBenchmark 类:基准测试定义:基准测试注册:运行基准测试:通过这些注释,你应该能够更好地理解代码的结构和功能。如果有任何具体问题或需要进一步的帮助,请随时告知。
2024-11-05 09:00:38
698
原创 【无标题】联邦学习(Federated Learning)是一种分布式机器学习方法
联邦学习(Federated Learning)是一种分布式机器学习方法,它允许参与方(如移动设备或整个组织)在不分享本地数据的情况下共同训练一个模型。这种方法的主要优点在于它能够在保护数据隐私的同时利用分散的数据资源。以下是联邦学习的一些关键特点:隐私保护:数据保留在本地设备或系统上,仅模型更新或梯度被共享,这有助于保护敏感信息。数据安全:避免了数据集中存储带来的安全风险,减少了数据泄露的可能性。法律遵从性:有助于遵守各种数据保护法规,如欧洲的《通用数据保护条例》(GDPR)。
2024-10-29 09:06:39
1249
原创 conda打包
tar是一个在 Unix 和类 Unix 系统中常用的命令行工具,用于打包多个文件和目录到一个归档文件(通常称为 tarball),以及从这些归档文件中解包文件和目录。以下是使用tar。
2024-10-12 17:31:49
557
原创 【无标题】获取网页文本
‘李元豪 from https://www.zhilu.space’= ‘李元豪 from https://www.zhilu.space’= ‘李元豪 from https://www.zhilu.space’= ‘李元豪 from https://www.zhilu.space’
2024-10-09 22:27:58
79351
原创 【智鹿空间python -m graphrag.query --root ./graphrag-practice-chinese --method global “请抽取出这篇文章中的所有实体和关系?
(D:\0728glm\condaenv2\myenv) PS D:\0728glm\condaenv2\myenv> python -m graphrag.query --root ./graphrag-practice-chinese --method global “生成故事人物关系图”python -m graphrag.query --root ./graphrag-practice-chinese --method global “请抽取出这篇文章中的所有实体和关系?
2024-10-07 15:00:22
1028
原创 【无标题】logistic映射
时,系统的动态行为超出了传统的倍周期分岔和混沌区域,进入了一个被称为“混沌海”的区域。在这个区域中,系统的行为变得极其敏感依赖于初始条件,即使是微小的变化也会导致完全不同的长期行为。在 [3, 4] 区间内的行为,这个区间内系统表现出丰富的动态行为,包括倍周期分岔和混沌。的情况,因为这个范围内的行为过于极端和不稳定,无法有效反映现实世界的动态过程。的情况下,Logistic映射的迭代结果通常会迅速发散到无穷大或负无穷大,因为方程中的非线性项。,固定点是不稳定的,系统的行为将更加复杂和不可预测。
2024-10-01 08:05:24
1415
原创 ollama使用caused by nameresolutionerror
{ “role”: “user”, “content”: “介绍一下北京景点?” }],}’
2024-09-29 17:37:48
1276
原创 【无标题】vscode新建md文件后,预览,再复制就可以保存大模型回答的格式了
vscode新建md文件后,预览,再复制就可以保存大模型回答的格式了。
2024-09-24 09:19:41
182
原创 拥抱新事物
当然,从知晓到感兴趣,从感兴趣到动手参与挖矿,这中间的鸿沟也是巨大的。很多人,往往是出于本能的怀疑,看不见、看不懂、看不起,更别提投入时间精力付诸行动了。
2024-09-22 12:45:27
136
原创 python 自动化 win11 编程 实现 一键 启动多个软件,QQ浏览器,snipaste,pycharm软件
这样,代码更加清晰、模块化,并且具有更好的错误处理机制,易于维护和扩展。
2024-09-20 17:39:34
791
原创 python win11 编程 实现:读取指定文件夹下所有word文档,然后依次把文档里面的文本返回【zhilu.space】
folder_path = ‘path_to_your_folder’ # 替换为你的文件夹路径。
2024-09-20 17:02:24
283
原创 embedding模型有哪些?如何选择合适的embedding模型?
embedding模型是一种将数据映射到低维空间的模型,常用于自然语言处理、推荐系统、图像识别等领域。
2024-09-19 14:46:16
2364
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人