- 博客(122)
- 收藏
- 关注
原创 flashtts 微调 四张gpu卡总是爆内存溢出,2张gpu不爆,为什么
【代码】flashtts 微调 四张gpu卡总是爆内存溢出,2张gpu不爆,为什么。
2025-08-22 08:31:30
125
原创 数字人视频互动技术对比
云 SaaS:Python + PaddleMIX(155 ms,140 并发),适合国内合规。边缘 GPU:C++ TensorRT(190 ms,150 并发),低延迟首选。单文件/跨平台:Rust Candle(205 ms,135 并发),5 MB 零依赖。
2025-08-17 11:22:15
986
原创 开源长期记忆 短期记忆 框架调研对比19999字
• 长期记忆:跨会话存储关键信息,依赖外部存储(向量库/图数据库),支持个性化服务(如用户偏好记录),但需解决数据一致性与检索效率问题。• 短期记忆:保存即时上下文(最近3-5轮对话),通过滑动窗口或队列实现,成本低但易遗忘早期信息,适用于简单任务(如FAQ机器人)。提取三元组(实体-关系-实体)构建图谱(如Cognee),支持多跳推理(例:用户提及“过敏药物”→关联“病史记录”)。• Swap机制:将低频记忆移至低成本存储(如磁盘),高频记忆驻留内存,平衡性能与成本。
2025-08-15 20:33:51
373
原创 # 2025全球AI游戏市场研究报告:行业洞察与未来趋势
AI技术正深刻改变游戏行业,在内容创作、开发、运营和玩家体验等方面广泛应用,带来创新与变革。AI游戏市场规模快速增长,用户规模不断扩大,商业模式日益丰富,竞争格局逐渐形成。但也面临技术瓶颈、伦理法律问题和市场接受度挑战。
2025-08-14 15:49:10
1226
原创 【一步AI】模型压缩:减小模型体积与计算量
提高ASR和TTS推理速度的核心是**“在精度可接受范围内,最小化计算量、优化硬件利用率、适配场景需求”。量化和知识蒸馏是性价比最高的通用方案;轻量级架构设计适合资源极度受限的边缘场景;算子优化和推理引擎选择则是工程落地的关键。实际应用中,通常组合多种方法(如“量化+算子融合+轻量级架构”),在速度与精度间取得平衡。选择适合的ASR(自动语音识别)和TTS(文本转语音)模型加速方法,需结合应用场景约束、硬件资源、精度需求、实时性要求**等核心因素综合决策。
2025-08-13 19:39:02
615
原创 如何提高大模型 nl2sql 的sql 执行结果的准确率
让模型“写得对”,让 SQL“跑得通”,让结果“信得过”。需结合模型优化(语法+语义)、数据校验(元信息+类型)、工程保障(预验证+反馈),形成“生成-校验-修正”的闭环。对于高要求场景(如金融、医疗),还可加入人工审核环节,进一步降低风险。RSL-SQL框架案例:RSL-SQL框架针对模式链接存在的风险,结合双向模式链接、上下文信息增强、二元选择策略与多轮自校正。在BIRD和Spider基准测试中表现出色,使用GPT-4o时,在BIRD上执行准确率达67.2%,在Spider上达87.9%。
2025-08-01 19:05:30
899
1
原创 qwen 多模态 预训练流程步骤详细介绍
Qwen 多模态系列(包括 Qwen-VL、Qwen2-VL、Qwen2.5-VL)的预训练流程采用三阶段渐进式训练策略,逐步融合视觉与语言模态,并通过数据优化提升模型性能。• 视觉-语言适配器:单层交叉注意力模块,使用 256 个可学习查询向量(learnable queries)压缩图像特征序列至固定长度(256),并注入 2D 绝对位置编码保留空间信息。• 规模:35 万指令数据(Qwen-VL)→ 200 万(Qwen2.5-VL),50% 为多模态(图文/视频),50% 为纯文本。
2025-08-01 19:05:24
817
原创 我用提示词A 对qwen3-4b大模型进行 nl2sql 任务 grpo 强化学习,评估的时候换新提示词,会影响nl2sql测评准确率吗?
正确SQL明确统计。
2025-08-01 19:05:13
1007
原创 nl2sql grpo强化学习训练,加大数据量和轮数后,准确率没提升,反而下降了,如何调整
NL2SQL中GRPO训练的准确率下降,本质是“数据-模型-训练策略”不匹配的结果。
2025-07-31 10:16:27
1121
1
原创 改进算法(如LinUCB)或贝叶斯方法(如Thompson采样) 在qwen3-4b nl2sql 强化学习提升执行结果准确率 任务中哪个更好
若任务需结合领域特征(如固定数据库schema),可尝试改进LinUCB的特征设计,但Thompson采样仍是更稳健的基线方案。在Qwen3-4B模型的NL2SQL任务中,通过强化学习提升SQL执行结果的准确率时,Thompson采样(贝叶斯方法)通常比LinUCB(改进的置信区间算法)更优。• LinUCB需计算矩阵逆(O(d³),d为特征维度),当特征来自Qwen3-4B的高维输出时,计算延迟显著增加。◦ 结合Qwen3-4B的输出概率分布,设计分层贝叶斯模型(如融入表结构先验)。
2025-07-30 17:50:10
438
原创 深度思考和搜索研究 最新的GSPO强化学习算法
阿里Qwen团队在强化学习领域的创新主要体现在 GSPO 算法和大规模强化学习模型的开发上。GSPO 算法通过序列级优化提升了训练效率和稳定性,而 Qwen3 系列模型则通过强化学习显著增强了代码能力、代理能力和通用智能水平。如果需要进一步了解 GSPO 算法或 Qwen 模型的具体技术细节,可以访问阿里 Qwen 的官方公告或技术文档。GSPO通过群体相对优化范式,重新定义了大语言模型强化学习的技术路径。其核心价值不仅在于提升推理任务的准确率和效率,更在于为资源受限环境下的AI开发提供了可行方案。
2025-07-28 15:53:09
1751
原创 【一步ai】UCB的日常本质是:“给未知留机会,但不放弃已知的好”。
通过以上详细的改进建议和操作步骤,您可以系统地分析和解决当前模型在NL2SQL任务中执行结果准确率不高的问题。请根据实际情况选择适合的方法,并逐步实施和验证,以达到最佳的改进效果。如果您在实施过程中遇到任何问题或需要进一步的指导,请随时与我联系。一、奖励函数重构:解决语义-结构错位问题核心问题:当前奖励函数过度侧重语法正确性(如SQL解析通过率),而对执行结果的逻辑匹配关注不足,导致模型生成“语法正确但语义偏差”的SQL。
2025-07-28 10:34:02
778
原创 如果是在训练模式下,返回所有候选文本(不选择最佳) 有哪些影响
在强化学习(如PPO、GRPO)中,优势估计(Advantage Estimation)需区分不同质量候选的回报差异,若次优解比例过高,梯度更新方向可能不一致,延缓收敛速度。例如,在SEARCH-R1框架中,GRPO算法虽支持多候选并行,但训练初期奖励波动显著,需更多步骤稳定策略。例如,在SQL生成任务中,返回语法正确但语义偏差的候选,能教会模型区分表面合理性与实际有效性,减少过拟合。例如,在生成对抗网络(GAN)辅助的多目标演化中,生成器需为每个候选计算多样性损失(如欧氏距离均值),显著增加单步耗时。
2025-07-28 09:09:29
385
原创 【无标题】qwen3-8b 强化学习训练后的模型,可以接着 进行其他grpo 强化学习训练 吗
Qwen3-8B在强化学习训练后,完全可以继续进行GRPO强化学习训练,且这种迭代方式是提升模型性能的有效手段。训练目标与奖励模型的一致性;超参数与训练策略的适配(如学习率、KL约束);数据分布的多样性以避免遗忘。通过合理设计多轮RL流程,可实现模型从“初步对齐”到“精细优化”的逐步提升。3是的,Qwen3-8B 在完成一次 GRPO 强化学习训练后,完全可以继续进行其他 GRPO 训练。
2025-07-25 17:37:55
807
原创 grpo 强化学习 奖励分数是 0-1 还是 -1 到1 好
实际应用中,奖励设计的核心是“信号与目标的一致性”——确保奖励能清晰反映“哪些行为应被鼓励,哪些应被避免”,范围选择需服务于这一核心目标。两者各有适用场景,关键是能否通过奖励信号有效引导智能体学习预期行为。在强化学习中,奖励分数的范围选择(0-1 还是 -1 到 1)没有绝对的“好坏”,核心取决于。
2025-07-24 11:19:36
360
原创 【一步步ai】数据增强与预处理
核心趋势轻量化与效率优先:中小模型(7B/32B)通过架构优化(如SQL-R1的奖励机制)实现与大模型接近的性能。多模态融合:TNT框架等方案将表格、图像等非结构化数据纳入NL2SQL流程。工业级工程化:阿里云、SQLord等框架通过模块化设计降低企业落地门槛。待解决挑战动态适配:如何高效处理数据库Schema频繁变更。跨模态推理:结合知识图谱与文本生成更复杂的复合查询。安全验证:建立系统化的可解释性与合规性评估体系。未来,NL2SQL模型架构将进一步向自适应、可解释、多模态。
2025-07-22 11:24:00
1081
1
原创 【一步步ai】先画一张“边界清单”:明确“我的底线是什么”
“顿感力”(源于渡边淳一的概念)并非迟钝,而是一种主动的心理调节能力——对负面信息、无关干扰、短期波动保持“适度钝感”,从而聚焦核心目标、减少内耗、保持韧性。它的核心是“抓大放小”的智慧,以下是其背后的关键观念和可培养的习惯:“不被他人评价绑架”顿感力的起点是接受“他人的看法≠你的价值”。有人批评、否定、甚至误解时,不必立刻自我怀疑或急于反驳——先判断对方的评价是否有客观依据,若无关紧要(比如单纯的情绪发泄、偏见),则主动“过滤”。例:同事随口说“你这点做得不够好”,顿感力强的人会想“他是否了解完整情况
2025-07-21 19:54:52
706
原创 【zhiluspace】中医解决 28岁男生 有小肚腩 问题方法
28岁男性的小肚腩,本质是“生活习惯+体质失衡”的外在表现,中医调理的关键不是“硬减”,而是通过“吃对、动对、气顺、脾强”,让身体自己把多余的痰湿代谢掉。松垮的小肚腩对应“脾虚无力”,坚硬的小肚腩对应“气滞不通”,找准自己的类型,把上述方法融入日常(哪怕每天只做2-3点),1-2个月后,不仅肚子会紧实,精力、睡眠也会同步改善。
2025-07-21 14:48:02
971
原创 grpo 优化
[{‘role’: ‘assistant’, ‘content’: '\n\n\n\n{“sql”: "WITH tag_stats AS ( SELECT t.tag_name, AVG(t.value) AS avg_value, COUNT() AS record_count FROM (SELECT ‘user_tag_esv5gs8’ AS tag_name, value FROM user_tag_esv5gs8 UNION ALL SELECT ‘user_tag_3cjsx09’ AS ta
2025-07-18 20:11:48
747
原创 screen -r 2050449 # 重新连接到 run_models 会话
SET:其核心作用是赋值或者进行配置,无论是对用户变量、系统变量赋值,还是在UPDATE语句中更新列的值,都能实现。UNSET:标准SQL中没有这个关键字,不过在特定数据库或者场景下,可能会用它来取消变量、移除列或者撤销权限等。实际使用时,要依据具体的数据库系统(如MySQL、PostgreSQL、SQLite等)来确认语法是否支持。import osimport re# 1. 环境配置与日志文件初始化# 创建日志目录。
2025-07-15 19:34:02
381
原创 grpo nl2sql qwen3 模型强化学习训练有效果的成立条件有哪些
以高质量SFT为基础,通过精准的奖励函数引导,在多样化环境中用稳定的RL算法持续优化,同时以全面的评估机制保障优化方向的正确性。任一环节的缺失(如奖励函数不合理、数据单一、算法不稳定)都可能导致训练无效或效果有限。GRPO模型在NL2SQL任务上的效果是多因素协同作用的结果。预训练模型具备领域基础能力,交互环境反馈准确,算法参数设置合理,模型架构适配SQL生成,解码策略稳定高效,计算资源与训练机制保障充分,评估体系全面无偏。任一环节的短板(如长序列生成不稳定、探索率调整不当)都可能导致训练效果受限。
2025-07-14 20:19:24
641
原创 如何蒸馏 设计 中文nl2sql 数据集,进行grpo强化学习 训练qwen3-8b,可以提升大模型nl2sql的能力,支持300行sql生成
高质量复杂中文NL2SQL数据集构建...表达能力提升:窗口函数、递归查询等大幅简化复杂查询。数据类型扩展:支持 XML、BOOLEAN 等现代数据处理需求。标准化增强:明确事务隔离级别、外连接语法等,减少厂商差异。功能模块化:引入 XML、OLAP 等独立模块,便于数据库选择性实现。对于现代开发,建议优先使用 SQL-2003 特性,同时注意不同数据库的支持差异。
2025-07-11 18:35:09
643
原创 【元ai笔记】多维度反馈**:结合格式、执行、结果、长度奖励,如SQL-R1的复合奖励机制。
在对Qwen3模型进行LoRA微调时,需要根据模型的具体架构来配置不同层的参数。Qwen3属于Transformer架构,其核心组件包括自注意力层(Self-Attention)和前馈网络(FFN),通常LoRA会应用在注意力机制的线性层上。对于Qwen3模型,典型的LoRA配置如下:针对不同层的配置策略1. 微调所有层如果需要微调所有层,可以保持上述配置不变,会应用到模型的所有层。若只需微调特定层(如最后几层),可以使用参数:3. 为不同层设置不同的秩和缩放因子可以使用和为不同层设置不同的参数:
2025-07-10 19:54:10
1030
原创 sftGRPO
二、核心创新:跨模态迁移与小样本高效训练1. 跨模态推理迁移机制 - 视觉-文本双向对齐:通过自适应长度的链式思维蒸馏(AL-CoTD),动态调整推理链长度(从 4000 token 缩减至 700 token),提升视觉问题(如电路图分析、医学影像诊断)的推理效率。- 多学科泛化能力:在物理、数学、逻辑等领域的评测中(如 PhyX-MC-Text-Minimal、MathVista),模型通过跨模态因果建模,将文本推理模式迁移至图表解析任务,实现知识复用。”)时输出熵的变化。
2025-07-09 21:21:13
434
原创 300行SQL语句生成
> - GPU: 8x A100 80G > - 存储:2TB NVMe 用于训练数据 > - 内存:512GB RAM > - 数据库:MySQL集群+10TB样例数据 通过此方案,Qwen-8B可在4周内获得稳定生成300行生产级SQL的能力,在金融/电商等复杂场景达到实用水平。:选用更擅长 SQL 生成的模型(如 GPT-4、Claude-3 或专业 SQL 模型),生成高质量长 SQL 样本。) - 随机插入注释、调试语句 - 模拟多表 JOIN(10+ 表关联)-
2025-07-09 20:58:34
679
原创 200nl2sql
核心价值通过动态权重平衡中文复杂性与SQL性能,使模型在方言理解(如粤语术语)、嵌套查询等场景鲁棒性提升30%+。标量奖励简化PPO/DPO训练,加速收敛(实验显示训练迭代次数减少40%)。待突破挑战中文省略结构的完备性补全(如“同比”需补时间范围)。权重公式的领域自适应自动化(当前需人工预配置)。注:实际落地可参考阿里云PolarDB的动态权重配置接口或Spring AI Alibaba的语义一致性校验模块,两者均支持中文场景的标量奖励扩展。
2025-07-09 20:06:51
766
原创 gloo 多卡训练
大多数情况下,安装NCCL后无需重启系统,只需更新环境变量并重启相关应用程序即可。仅在涉及驱动更新或系统配置变更时需要重启。为什么选择Docker?隔离性:容器内的环境(如CUDA、NCCL、Python包)与主机完全隔离,不会影响系统其他组件。可移植性:一次构建的镜像可在任何支持Docker的环境中运行,确保环境一致性。无需重启主机:容器启动时会加载所需的所有依赖,无需修改主机系统或重启。版本控制:可轻松切换不同版本的CUDA、NCCL或框架(如PyTorch)。
2025-07-08 20:18:30
648
原创 【知足常乐ai笔记】机器人强化学习
摘要:针对SQL查询处理效率提升,本文提出五种智能分段策略:(1)时序语义分段(时间区间/数据变化/会话间隔);(2)语义解析分段(模式链接/分层解码);(3)执行优化导向分段(分句解析/子查询剥离);(4)结果集动态分段(关键字提取/打分排序);(5)动态参数化分段(外部参数/条件表达式)。这些方法可根据时序数据库、自然语言转SQL、复杂查询优化等场景灵活组合,显著提升查询可读性、执行效率及结果精准度。最佳实践需结合具体数据库类型和业务需求选择适配策略。
2025-07-08 18:55:33
660
原创 【hyx】NL2SQL 的准确率提升需从数据、模型、推理、验证多环节入手:数据增强解决样本不足问题,模型架构优化强化语义与 schema 的对齐,逻辑推理方法提升复杂查询处理能力,后处理与交互则进一步
NL2SQL的准确率提升需从。
2025-07-06 21:05:27
845
原创 【行云流水ai笔记】粗粒度控制:推荐CTRL、GeDi 细粒度/多属性控制:推荐TOLE、GPT-4RL
TOLE (Token-level Optimization with Language Models) 是一种基于强化学习的可控文本生成方法,通过token级别的反馈实现对文本多个属性的精确控制。如果遇到任何问题,请通过邮箱联系作者获取支持。选择方法时需考虑控制精度需求、计算资源和数据规模。TOLE的优势在于token级控制和自动权重学习,适合高精度多属性场景。
2025-07-04 20:04:59
929
原创 强化学习【行云流水ai笔记】
好的,这份解读将帮你快速抓住这篇论文的核心思想和贡献:论文核心: 提出一种名为 TOLE 的新型强化学习算法,用于可控文本生成。其核心创新在于利用细粒度的 Token 级别反馈来指导模型学习,并设计了一种增强鲁棒性的训练策略。关键背景与问题可控文本生成的重要性: 大型语言模型 (LLM) 需要根据特定要求(如情感、风格、主题、关键词等)生成文本。现有方法的不足:微调方法 (Finetuning-based): 通常直接在特定约束数据上微调模型。容易过拟合到训练数据,泛化能力差,可能损害模型原有的通用能力。
2025-07-02 18:08:45
999
原创 【ai笔记】有效帮助定位代码问题,特别是针对数据格式不匹配、索引越界等问题:
Name: verl基于上面的环境信息,修改下面代码为通过verl vllm支持 2卡DDp并行 qwen3-1.7b模型进行nl2sql ppo 强化学习的代码。
2025-07-01 19:11:59
621
原创 LLaMA-Factory 对 omnisql 进行 ppo dpo grpo nl2sql任务 实现难度 时间 全面对比
通过上述分析,GRPO在omnisql任务中综合表现最优,尤其在复杂查询场景下具有显著优势。建议优先尝试GRPO,若资源有限可从DPO起步,PPO作为兜底方案。
2025-06-27 17:46:22
1024
1
原创 【行云流水a】淘天联合爱橙开源强化学习训练框架ROLL OpenRL/openrl PPO-for-Beginners: 从零开始实现强化学习算法PPO 强化学习框架verl 港大等开源GoT-R1
以下是 DQN(Deep Q-Network) 和 PPO(Proximal Policy Optimization) 的全面对比流程图及文字解析。两者是强化学习的核心算法,但在设计理念、适用场景和实现机制上有显著差异:详细对比解析1. 算法类型DQNPPO值函数方法:学习最优动作值函数 ( Q^*(s, a) )策略优化方法:直接优化策略函数 ( \pi(a \mid s) )通过Q值间接控制策略直接输出动作概率分布2. 策略表示DQNPPO
2025-06-27 09:48:00
1038
原创 dockers virbox 安装
dpkg−−print−architecturesigned−byetcaptkeyringsdockergpghttps//downloaddockercomlinuxubuntu。
2025-06-26 18:00:59
695
原创 强化学习 16G实践以下是基于CQL(Conservative Q-Learning)与QLoRA(Quantized Low-Rank Adaptation)结合的方案相关开源项目及资源,【ai技】
condavirtualenv修复驱动与CUDA版本匹配后,再安装兼容的框架版本,即可正常使用GPU加速计算。以下为GRPO优化训练部分的详细泳道图,展示从数据采样到权重更新的完整闭环流程:fill:#333;定时训练信号(间隔10分钟)请求当前生产模型(gR-1.3.4)发送基础模型权重加载模型到显存请求批次数据优先级排序(Top 20%高TD-error)发送经验数据前向传播返回策略概率&状态价值计算广义优势。
2025-06-26 16:45:09
1061
原创 【ai学习笔记】GitLab
选择适合项目的CI/CD工具需要综合考虑团队规模、技术栈、集成需求、预算和使用习惯等因素。通过以上维度的评估,结合项目的实际需求和团队现状,能更精准地选择合适的CI/CD工具。CI/CD(持续集成/持续交付)是现代软件开发中的关键实践,通过自动化工具可以大幅提升开发效率和软件质量。中的阶段、作业和脚本,实现自动化构建、测试和部署。通过合理使用分支策略和GitLab的分支管理功能,可以有效组织团队开发流程,避免代码冲突,提高协作效率。通过以上步骤,你可以在GitLab上创建项目并配置完整的CI/CD流程。
2025-06-26 09:39:58
1234
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人