机器学习期末大作业(基于VggNet网络的智能垃圾分类系统优化与实践)

摘要:这是基于CNN的垃圾分类模型的设计与实现。随着全球垃圾产生量的增加和环境保护的需求,传统的垃圾分类方法效率低且易出错。本文提出的模型利用深度学习中的CNN架构,通过对大量垃圾图像数据进行训练,实现了对不同类型垃圾的自动分类。使用PyTorch框架,本文对模型的构建、训练过程进行了详细描述,并通过实验验证了模型的分类准确性。最终结果表明,该模型能够有效提高垃圾分类的效率和准确性,为智能垃圾分类系统的应用提供了有力支持。

        本研究针对垃圾分类任务,比较了三种深度学习模型的性能:AlexNet、ResNet和VGGNet。通过调整超参数如学习率、动量、批量大小和训练轮次,对每个模型进行了多组实验,以评估其在准确率、训练时间和泛化能力方面的表现。

        实验结果显示,VGGNet-19在15轮训练中取得了最佳性能,训练准确率达到90.00%,测试准确率为86.80%,且训练耗时适中,展现出卓越的特征提取和泛化能力。ResNet152在20轮训练中也表现出良好的平衡,训练准确率为88.63%,测试准确率为84.28%,在准确率和训练时间之间取得了较好的折中。相比之下,AlexNet和ResNet18虽然训练速度较快,但在增加训练轮次后未能显著提升准确率,且出现了过拟合现象,限制了其在高精度需求场景中的应用。

        综合考虑实验结果,本研究建议在计算资源充足且精度要求高的情况下优先采用VGGNet-19模型;在需要兼顾训练时间和性能时,可选择ResNet152模型;而在资源受限或训练速度要求较高的场景中,AlexNet和ResNet18则为适宜的选择。本研究为垃圾分类任务中深度学习模型的选择和超参数调优提供了实证参考,有助于在实际应用中实现高效且准确的垃圾分类。

目录

1 引言                                              

1.1 课题背景

1.2国内外研究现状 

1.2.1 传统方法  

1.2.2基于深度学习的方法  

1.2.3总结  

2开发环境配置

2.1 开发工具软件

2.2 第三方依赖库

3数据处理

3.1 数据来源

3.2 图像处理

4卷积神经网络模型  

4.1AlexNet模型

4.1.1AlexNet模型简介  

4.1.2AlexNet网络结构

4.1.3AlexNet优缺点 

4.2VGG Net模型

4.2.1VGG Net模型简介  

4.2.2VGG Net网络结构

4.2.3VGG Net优缺点

4.3ResNet模型

4.3.1ResNet模型简介

4.3.2ResNet网络结构

4.3.3ResNet优缺点

5模型代码说明

5.1神经网络模型代码说明

5.1.1神经网络模型训练代码  

5.1.2神经网络模型测试代码  

5.1.3神经网络模型验证代码  

5.2模型及超参数代码

5.2.1AlexNet模型  

5.2.2ResNet模型  

5.2.3VGG Net模型  

6模型测评 

6.1AlexNet模型

6.2ResNet模型

6.3VGGNet模型

6.4总结对比

7总结

7.1任务收获

7.2心得体会


1 引言                                              

1.1 课题背景

        随着全球人口的不断增加和经济的迅速发展,垃圾问题日益严重。垃圾处理不仅涉及到环境保护,还关系到资源的再利用和可持续发展。传统的垃圾分类方式主要依靠人工操作,效率低下且易出错。而随着科技的进步,基于人工智能的自动化垃圾分类技术逐渐受到关注,特别是基于深度学习的图像识别技术在垃圾分类中的应用成为了研究的热点。

        垃圾问题的严峻性。全球垃圾的产生量以惊人的速度增长。据统计,2016年全球城市垃圾总量达到了20.1亿吨,预计到2050年这一数字将增长到34亿吨。垃圾不仅占用大量土地资源,还会对土壤、水源和空气造成污染,严重威胁人类健康和生态环境。特别是在发展中国家,垃圾处理不当导致的环境问题更加突出。

        垃圾分类的必要性。垃圾分类是实现垃圾减量化、资源化和无害化处理的重要手段。通过分类,可以有效提高垃圾的回收利用率,减少垃圾处理的成本和环境污染。不同类型的垃圾需要采用不同的处理方法,正确的分类可以提高处理效率。例如,可回收垃圾可以再利用,厨余垃圾可以堆肥,有害垃圾需要特殊处理,避免对环境和人体健康造成危害。

        传统垃圾分类方法的局限性。目前,许多国家和地区仍主要依靠人工进行垃圾分类。然而,人工分类存在诸多问题。首先,人工分类效率低下,尤其在垃圾量大的情况下,难以满足处理需求。其次,人工分类容易出现错误,影响分类效果。此外,垃圾中含有大量的有害物质和病菌,人工分类对工作人员的健康构成威胁。

        随着人工智能技术的发展,基于深度学习的图像识别技术在垃圾分类中的应用成为可能。深度学习,特别是卷积神经网络(CNN),在处理图像识别任务方面表现出色。通过训练大量标注好的垃圾图像数据,深度学习模型能够自动学习垃圾的特征,实现高效、准确的分类。PyTorch是目前广泛使用的深度学习框架之一,具有灵活、高效、易于使用等优点。本项目基于PyTorch框架,构建了一个垃圾分类模型。通过对大量垃圾图像进行训练和测试,模型能够自动识别和分类不同类型的垃圾,提高垃圾分类的效率和准确性。

1.2国内外研究现状 

1.2.1 传统方法  

        在深度学习技术兴起之前,垃圾分类主要依赖于传统的图像处理和机器学习方法。这些方法基于颜色、纹理和形状等特征来进行垃圾分类。传统方法虽然在一定程度上解决了垃圾分类问题,但其准确性和效率远不及现代深度学习技术。以下将详细介绍几种常见的传统垃圾分类方法。

        基于颜色特征的垃圾分类:颜色特征是图像处理中的基本特征之一,不同类型的垃圾往往具有不同的颜色分布。基于颜色特征的垃圾分类方法通过提取垃圾图像的颜色直方图或者颜色矩来进行分类。这些方法的主要步骤包括:1.图像预处理:对输入图像进行预处理,如去噪、平滑等,以减少噪声对颜色特征提取的影响。2.颜色特征提取:提取图像的颜色直方图或颜色矩,形成颜色特征向量。颜色直方图描述了图像中各颜色分量的分布情况,而颜色矩则是对颜色直方图的进一步统计。3.特征匹配与分类:将提取的颜色特征向量与预先构建的颜色特征库进行匹配,通过计算相似度来判断图像所属的垃圾类别。虽然基于颜色特征的方法简单易行,但其效果容易受到光照变化和图像背景的影响。特别是在复杂场景下,不同类别垃圾的颜色特征可能存在较大的重叠,导致分类准确率下降。

        基于纹理特征的垃圾分类:纹理特征是描述图像表面结构的重要特征,不同材质的垃圾往往具有不同的纹理。基于纹理特征的垃圾分类方法通过提取图像的纹理特征,如灰度共生矩阵、局部二值模式(LBP)等来进行分类。这些方法的主要步骤包括:1.图像预处理:对输入图像进行灰度化、归一化等预处理,以便于纹理特征的提取。2.纹理特征提取:提取图像的纹理特征向量。灰度共生矩阵通过统计像素灰度值的共现频率来描述纹理结构,而局部二值模式则通过比较像素与其邻域像素的灰度值来形成纹理特征。3.特征匹配与分类:将提取的纹理特征向量与预先构建的纹理特征库进行匹配,通过计算相似度来判断图像所属的垃圾类别。基于纹理特征的方法能够较好地描述不同材质垃圾的表面结构,但在处理复杂背景和高噪声图像时,分类效果可能受到影响。

        基于形状特征的垃圾分类:形状特征是描述物体外形的重要特征,不同类别的垃圾往往具有不同的形状。基于形状特征的垃圾分类方法通过提取图像的边缘、轮廓等形状特征来进行分类。这些方法的主要步骤包括:1.图像预处理:对输入图像进行二值化、边缘检测等预处理,以提取物体的形状信息。2.形状特征提取:提取图像的形状特征向量。常用的形状特征包括Hu矩、傅里叶描述子等,前者通过计算图像的几何矩来描述形状,后者则通过对边缘轮廓进行傅里叶变换来获得形状特征。3.特征匹配与分类:将提取的形状特征向量与预先构建的形状特征库进行匹配,通过计算相似度来判断图像所属的垃圾类别。基于形状特征的方法对物体的外形变化较为敏感,能够有效区分不同形状的垃圾,但在处理复杂形状和遮挡情况时,分类效果可能会下降。

        基于光学流的垃圾分类:光学流是描述图像中像素移动的矢量场,能够反映物体的运动信息。基于光学流的垃圾分类方法通过分析垃圾图像序列中的光学流信息来进行分类。这些方法的主要步骤包括:1.光学流计算:对连续的垃圾图像帧进行光学流计算,获得物体的运动信息。2.特征提取与匹配:提取光学流特征向量,并与预先构建的光学流特征库进行匹配,通过计算相似度来判断图像序列所属的垃圾类别。3.分类决策:基于光学流特征的匹配结果,进行分类决策。光学流方法能够捕捉物体的运动信息,对于动态场景中的垃圾分类具有一定优势,但其计算复杂度较高,实时性较差。

        基于背景建模的垃圾分类:背景建模是通过建立图像的背景模型来检测前景物体的方法,常用于视频监控中的目标检测。基于背景建模的垃圾分类方法通过建立垃圾图像的背景模型,分离出前景垃圾进行分类。这些方法的主要步骤包括:1.背景建模:对垃圾图像进行背景建模,建立背景模型。2.前景分离:根据背景模型分离出前景垃圾物体。3.特征提取与分类:对分离出的前景垃圾进行特征提取和分类。背景建模方法能够有效分离前景垃圾,提高分类的准确性,但在处理动态背景和复杂场景时,效果可能不理想。

        虽然传统方法在垃圾分类中取得了一定的效果,但其局限性也十分明显。首先,传统方法通常依赖于手工特征提取,特征选择和参数调优需要大量的人工干预,且难以应对复杂多变的垃圾图像。其次,传统方法对噪声和环境变化敏感,分类效果容易受到外界因素的影响。此外,传统方法的泛化能力较差,难以适应不同场景和多样化的垃圾种类。

1.2.2基于深度学习的方法  

        随着深度学习技术的迅速发展,基于深度学习的垃圾分类方法在近年来得到了广泛关注和研究。相较于传统方法,基于深度学习的方法能够自动学习到图像中的特征表示,并且具有更强的泛化能力和鲁棒性。在垃圾分类领域,基于深度学习的方法主要可以分为以下几类:

        卷积神经网络(CNN)是目前图像分类任务中最为广泛应用的深度学习模型之一。CNN通过卷积层、池化层和全连接层的层级结构,能够自动学习图像中的特征表示,并通过多层特征提取和非线性变换实现对图像的分类。具体来说,基于CNN的垃圾分类方法包括以下步骤:1.数据预处理:对输入的垃圾图像进行预处理,如归一化、数据增强等,以提高模型的鲁棒性和泛化能力。2.特征提取:通过卷积层和池化层提取图像的特征表示。卷积层通过卷积核对图像进行局部感知,提取低层次特征;池化层则通过下采样操作,降低特征图的尺寸,减少计算量。3.特征学习:通过多层卷积层和池化层的堆叠,逐层提取高层次特征,并通过激活函数引入非线性变换,增强模型的表达能力。4.分类决策:通过全连接层对提取的特征进行分类,输出垃圾类别的概率分布。最后,通过损失函数计算分类误差,并通过反向传播算法进行模型训练和优化。基于CNN的垃圾分类方法具有很高的准确率和鲁棒性,能够自动学习到图像中的复杂特征,并且在处理大规模垃圾图像数据集时表现出色。

        深度残差网络(ResNet)是解决深层神经网络训练困难问题的一种有效方法。ResNet通过引入残差块(Residual Block),使得网络能够学习到残差表示,从而缓解梯度消失和梯度爆炸问题。具体来说,基于ResNet的垃圾分类方法包括以下步骤:1.残差学习:在每个残差块中,通过引入恒等映射(Identity Mapping)和跳跃连接(Skip Connection),使得输入可以直接通过残差块,并与经过卷积层和池化层的特征表示相加,从而实现残差学习。2.网络堆叠:通过堆叠多个残差块,构建深层网络,并在每个残差块中进行特征提取和残差学习,从而提高模型的表达能力和训练稳定性。3.分类决策:与CNN类似,通过全连接层对提取的特征进行分类,输出垃圾类别的概率分布。基于ResNet的垃圾分类方法能够有效缓解深层网络的训练困难问题,并且在处理复杂垃圾图像数据时表现出色。

        注意力机制(Attention Mechanism)是近年来在深度学习中广泛应用的一种技术,能够通过自适应地分配注意力权重,聚焦于图像中的重要区域,从而提高分类准确率。具体来说,基于注意力机制的垃圾分类方法包括以下步骤:1.注意力权重计算:通过注意力模块对输入图像进行特征提取,并计算每个特征的重要性权重,从而生成注意力图(Attention Map)。2.特征加权:将注意力权重与特征表示进行加权融合,使得模型能够聚焦于重要区域,从而提高分类准确率。3.分类决策:与CNN类似,通过全连接层对加权后的特征进行分类,输出垃圾类别的概率分布。基于注意力机制的垃圾分类方法能够通过自适应地分配注意力权重,提高模型对关键区域的感知能力,从而提高分类准确率和鲁棒性。

        卷积循环神经网络(CRNN)是结合卷积神经网络(CNN)和循环神经网络(RNN)的一种深度学习模型,能够同时捕捉图像的空间特征和时间序列特征。具体来说,基于CRNN的垃圾分类方法包括以下步骤:1.空间特征提取:通过CNN对输入图像进行空间特征提取,生成特征图。2.时间序列建模:通过RNN对特征图进行时间序列建模,捕捉特征之间的时序关系。3.分类决策:通过全连接层对提取的时序特征进行分类,输出垃圾类别的概率分布。基于CRNN的垃圾分类方法能够同时捕捉垃圾图像的空间特征和时间序列特征,从而提高分类准确率和鲁棒性。

        生成对抗网络(GAN)是一种通过对抗训练生成模型和判别模型的深度学习技术,能够生成高质量的图像数据。在垃圾分类中,GAN可以用于数据增强,通过生成逼真的垃圾图像,扩充训练数据集,从而提高分类模型的泛化能力。具体来说,基于GAN的垃圾分类方法包括以下步骤:1.生成模型训练:通过生成模型(Generator)生成逼真的垃圾图像。2.判别模型训练:通过判别模型(Discriminator)区分真实图像和生成图像,并对生成模型进行反向传播和优化。3.数据增强与分类:通过生成模型生成大量逼真的垃圾图像,扩充训练数据集,并训练分类模型,提高分类准确率。基于GAN的垃圾分类方法能够通过生成逼真的垃圾图像,提高分类模型的泛化能力和鲁棒性。

        基于深度学习的方法在垃圾分类领域展现出了强大的优势,相较于传统方法,具有更高的准确率和鲁棒性。通过卷积神经网络、深度残差网络、注意力机制、卷积循环神经网络和生成对抗网络等技术,基于深度学习的垃圾分类方法能够自动学习图像中的复杂特征,并在处理大规模数据集和复杂场景时表现出色。未来,随着深度学习技术的不断进步,垃圾分类的智能化和自动化水平将进一步提高,为解决垃圾处理问题提供更有效的技术手段。

1.2.3总结  

        综上所述,传统的垃圾分类方法通过利用颜色、纹理和形状等图像特征,结合机器学习算法,初步实现了垃圾的自动分类。然而,随着深度学习技术的发展,这些方法在处理复杂图像、提高分类准确率和处理效率方面的局限性日益显现。基于深度学习的垃圾分类方法能够自动学习图像特征,大幅提升分类效果,成为当前垃圾分类研究的主流方向。未来,随着深度学习技术的不断进步,垃圾分类的智能化、自动化水平将进一步提高,为解决垃圾处理问题提供更有效的技术手段。基于深度学习的方法在垃圾分类领域展现出了强大的优势,相较于传统方法,具有更高的准确率和鲁棒性。通过卷积神经网络、深度残差网络、注意力机制、卷积循环神经网络和生成对抗网络等技术,基于深度学习的垃圾分类方法能够自动学习图像中的复杂特征,并在处理大规模数据集和复杂场景时表现出色。未来,随着深度学习技术的不断进步,垃圾分类的智能化和自动化水平将进一步提高,为解决垃圾处理问题提供更有效的技术手段。

        PyTorch是一个开源的深度学习框架,提供了灵活、动态的图计算功能,使得模型的构建和训练变得更加简洁和高效。在垃圾分类领域,许多研究者选择使用PyTorch框架来实现他们的垃圾分类算法。PyTorch提供了丰富的模块和工具,如torch.nn模块用于构建深度学习模型、torch.optim模块用于定义优化器、torchvision模块用于处理图像数据等,这些工具使得基于PyTorch框架的垃圾分类算法的实现变得更加便捷和灵活。

2开发环境配置

2.1 开发工具软件

        在本项目中,我们选择使用Jupyter Notebook作为开发工具软件。Jupyter Notebook是一种交互式笔记本编程环境,以网页的形式呈现,能够直接在网页页面中编写和运行代码,并即时显示代码运行结果。其优点在于:

        交互性强: 可以将代码、文本、数学公式、图像等内容结合在一起,形成一个交互式的文档。

        便于说明文档编写: 在同一个页面中可以编写代码和相关的说明文档,便于及时解释代码的含义和逻辑。

        易于分享和展示: 可以将Jupyter Notebook导出为HTML、PDF等格式,便于分享和展示项目成果。

2.2 第三方依赖库

        在本项目中,我们会使用到以下第三方依赖库:

        torch 和 torchvision: PyTorch框架及其图像处理扩展库,用于构建和训练深度学习模型。

        matplotlib: 用于绘制图表和可视化数据,方便对模型训练过程和结果进行分析和展示。

        time、os、copy、warnings、defaultdict: Python标准库,提供了对时间、文件系统、复制、警告等操作的支持,用于辅助代码编写和调试。

        numpy: Python数值计算库,提供了对多维数组和矩阵的支持,用于进行数值计算和数据处理。

3数据处理

3.1 数据来源

        本项目所使用的数据集来源于Kaggle网站,通过下载获取的。该数据集由谷歌的网络抓取图像以及Kaggle上提供的一些图像混合而成。数据集分为先前的训练集和测试集。数据集涵盖了多种垃圾图像,包括服装、食物残渣、塑料等,共有23个类别。训练集和测试集中的图像数量可能不一致,需要进行适当的处理和调整。图像分辨率的可能各不相同,需要进行统一或调整。数据集中不同类别的图像数量可能存在不平衡现象,需要进行处理以防止模型训练过程中的偏差。

        在进行数据处理的过程中,我们需要考虑如何有效地利用数据集中的信息,提取有效的特征并消除不必要的噪声,以便训练出高性能的垃圾分类模型。

        网站地址:(https://www.kaggle.com/datasets/alistairking/recyclable-and-household-waste-classification)

3.2 图像处理

        本项目针对图像数据集实施了数据增强和规范化的处理策略。在训练过程中,采用了随机剪裁、镜像反射和水平翻转等增强手段,同时对图像的 RGB 通道进行了强度值的改变。而在测试阶段,则采取了更多样的裁剪方式,并对这些裁剪结果求平均,以提高模型的鲁棒性和泛化能力。

data_transforms = {

    # 训练使用数据增强和规范化

    'train': transforms.Compose([

        transforms.RandomResizedCrop(224),#图像随机裁剪并调整大小,增加了训练样本的多样性和泛化能力。

        transforms.RandomHorizontalFlip(),#图像随机水平翻转,增加了训练样本的多样性,有助于模型学习到不同视角下的特征。

        transforms.ToTensor(),#转化为Tensor,转换为PyTorch张量,方便后续的数据处理和模型训练。

        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # 标准化使用在ImageNet上计算的均值与方差

    ]),

    # 验证仅使用规范化

    'validation': transforms.Compose([

        transforms.Resize(256),#图像缩放,确保输入图像的尺寸一致,方便后续的处理和模型输入。

        transforms.CenterCrop(224),## 图像中心裁剪,保留了图像的主要内容。

        transforms.ToTensor(),

        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

    ]),

     'test': transforms.Compose([

        transforms.Resize(256),

        transforms.CenterCrop(224),

        transforms.ToTensor(),

        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

    ]),

}

        数据增强技术可以增加训练数据的多样性,提高模型的泛化能力。但需要注意,数据增强技术也可能会增加训练时间,并且不是所有的数据增强技术都适用于所有的任务和数据集。因此,在使用时需要进行适当的实验和调整。下列参数对模型的优化效果并不佳,故舍去。

transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2), 
 # 添加颜色抖动1

transforms.RandomRotation(degrees=20),  
# 添加随机旋转1

transforms.RandomAffine(degrees=0, translate=(0.1, 0.1), scale=(0.8, 1.2), shear=0.2), 
 # 添加随机仿射变换1

 部分数据图片及标签:

 

4卷积神经网络模型  

4.1AlexNet模型

4.1.1AlexNet模型简介  

        AlexNet跟LeNet-5类似也是一个用于图像识别的卷积神经网络。AlexNet网络结构更加复杂,参数更多。AlexNet是在LeNet的基础上加深了网络的结构,学习更丰富更高维的图像特征。AlexNet的特点:

        1.更深的网络结构

        2.使用层叠的卷积层,即卷积层+卷积层+池化层来提取图像的特征

        3.使用Dropout抑制过拟合

        4.使用数据增强Data Augmentation抑制过拟合

        5.使用Relu替换之前的sigmoid的作为激活函数

        6.多GPU训练

4.1.2AlexNet网络结构

        AlexNet网络结构相对简单,使用了8层卷积神经网络,前5层是卷积层,剩下的3层是全连接层,具体如下所示。

4.1 AlexNet网络结构

        上图中的输入是224×224,不过经过计算(224−11)/4=54.75并不是55×55,而使用227×227作为输入,则(227−11)/4=55

        网络包含8个带权重的层;前5层是卷积层,剩下的3层是全连接层。最后一层全连接层的输出是1000维softmax的输入,softmax会产生1000类标签的分布网络包含8个带权重的层;前5层是卷积层,剩下的3层是全连接层。最后一层全连接层的输出是1000维softmax的输入,softmax会产生1000类标签的分布。

        1.卷积层C1

        该层的处理流程是: 卷积–>ReLU–>池化–>归一化。

        (1)卷积,输入是227×227,使用96个11×11×3的卷积核,得到的FeatureMap为55×55×96。

        (2)ReLU,将卷积层输出的FeatureMap输入到ReLU函数中。

        (3)池化,使用3×3步长为2的池化单元(重叠池化,步长小于池化单元的宽度),输出为27×27×96((55−3)/2+1=27)

        (4)局部响应归一化,使用k=2,n=5,α=10−4,β=0.75进行局部归一化,输出的仍然为27×27×96,输出分为两组,每组的大小为27×27×48

        2.卷积层C2

        该层的处理流程是:卷积–>ReLU–>池化–>归一化

        (1)卷积,输入是2组27×27×48。使用2组,每组128个尺寸为5×5×48的卷积核,并作了边缘填充padding=2,卷积的步长为1。则输出的FeatureMap为2组,每组的大小为27×27×128. ((27+2∗2−5)/1+1=27)

        (2)ReLU,将卷积层输出的FeatureMap输入到ReLU函数中

        (3)池化运算的尺寸为3×3,步长为2,池化后图像的尺寸为(27−3)/2+1=13,输出为13×13×256

        (4)局部响应归一化,使用k=2,n=5,α=10−4,β=0.75进行局部归一化,输出的仍然为13×13×256,输出分为2组,每组的大小为13×13×128

        3.卷积层C3

        该层的处理流程是: 卷积–>ReLU

        (1)卷积,输入是13×13×256,使用2组共384尺寸为3×3×256的卷积核,做了边缘填充padding=1,卷积的步长为1.则输出的FeatureMap为13×13×384

        (2)ReLU,将卷积层输出的FeatureMap输入到ReLU函数中

        4.卷积层C4

        该层的处理流程是: 卷积–>ReLU

        该层和C3类似。

        (1)卷积,输入是13×13×384,分为两组,每组为13×13×192.使用2组,每组192个尺寸为3×3×192的卷积核,做了边缘填充padding=1,卷积的步长为1.则输出的FeatureMap为13×13×384,分为两组,每组为13×13×192

        (2)ReLU,将卷积层输出的FeatureMap输入到ReLU函数中

        5.卷积层C5

        该层处理流程为:卷积–>ReLU–>池化

        (1)卷积,输入为13×13×384,分为两组,每组为13×13×192。使用2组,每组为128尺寸为3×3×192的卷积核,做了边缘填充padding=1,卷积的步长为1.则输出的FeatureMap为13×13×256

        (2)ReLU,将卷积层输出的FeatureMap输入到ReLU函数中

        (3)池化,池化运算的尺寸为3×3,步长为2,池化后图像的尺寸为 (13−3)/2+1=6,即池化后的输出为6×6×256

        6.全连接层FC6

        该层的流程为:(卷积)全连接 -->ReLU -->Dropout

        (1)卷积->全连接:

        输入为6×6×256,该层有4096个卷积核,每个卷积核的大小为6×6×256。由于卷积核的尺寸刚好与待处理特征图(输入)的尺寸相同,即卷积核中的每个系数只与特征图(输入)尺寸的一个像素值相乘,一一对应,因此,该层被称为全连接层。由于卷积核与特征图的尺寸相同,卷积运算后只有一个值,因此,卷积后的像素层尺寸为4096×1×1,即有4096个神经元。

        (2)ReLU,这4096个运算结果通过ReLU激活函数生成4096个值

        (3)Dropout,抑制过拟合,随机的断开某些神经元的连接或者是不激活某些神经元

        7.全连接层FC7

        流程为:全连接–>ReLU–>Dropout

        (1)全连接,输入为4096的向量

        (2)ReLU,这4096个运算结果通过ReLU激活函数生成4096个值

        (3)Dropout,抑制过拟合,随机的断开某些神经元的连接或者是不激活某些神经元

        8.输出层

        第七层输出的4096个数据与第八层的1000个神经元进行全连接,经过训练后输出1000个float型的值,这就是预测结果。

        整个AlexNet网络包含的参数数量为:34944 + 307456 + 885120 + 663936 + 442624 + 37752832 + 16781312 + 4096000= 60964224大约6千万个参数。设定每个参数是32位浮点数,每个浮点数4个字节。这样参数占用的空间为:60964224 x 4 = 243856896(Byte) = 238141.5(Kb)=232.56(Mb)参数共占用了大约232Mb的空间。

层数

定义

数量

C1

卷积核11x11x3,96个卷积核,偏置参数

(11x11x3+1)x96=34944

C2

卷积核5x5x48,128个卷积核,2组,偏置参数

(5x5x48+1)x128x2=307456

C3

卷积核3x3x256,384个卷积核,偏置参数

(3x3x256+1)x384=885120

C4

卷积核3x3x192,192个卷积核,2组,偏置参数

(3x3x192+1)x192x2=663936

C5

卷积核3x3x192,128个卷积核,2组,偏置参数

(3x3x192+1)x128x2=442624

FC6

卷积核6x6x256,4096个神经元,偏置参数

(6x6x256+1)x4096=37752832

FC7

全连接层,4096个神经元,偏置参数

(4096+1)x4096=16781312

Output layer

全连接层,1000个神经元

1000x4096=4096000

4.1.3AlexNet优缺点 

        1.AlexNet优点

        (1)深度学习的突破:

        革命性进步:AlexNet是首个在ImageNet竞赛中取得显著胜利的深度卷积神经网络模型,它的成功证明了深度学习在图像分类任务中的巨大潜力,推动了深度学习的发展。

        (2)多通道并行计算:

        并行计算:AlexNet采用了两个GPU并行计算的设计,将模型分布到两个GPU上,缓解了单个GPU内存不足的问题,提高了训练效率。这一设计在当时是非常创新的。

        (3)激活函数ReLU的使用:

        ReLU激活函数:AlexNet首次在大规模深度学习模型中广泛使用ReLU(Rectified Linear Unit)激活函数,相比于传统的sigmoid或tanh激活函数,ReLU大大加快了模型的训练速度并减轻了梯度消失问题。

        (4)数据增强和Dropout:

        数据增强:AlexNet在训练过程中采用了数据增强技术,如随机裁剪和水平翻转,增加了训练数据的多样性,减轻了过拟合。

        Dropout:AlexNet引入了Dropout层,这种正则化技术通过随机丢弃神经元来防止过拟合,提高了模型的泛化能力。

        (5)高性能:

        卓越性能:在2012年ImageNet竞赛中,AlexNet显著降低了错误率,从而展示了深度卷积神经网络在图像分类任务中的巨大优势。

        2.AlexNet缺点

        (1)计算资源需求高:

        高计算成本:AlexNet的模型参数量较大,需要大量的计算资源进行训练。虽然在2012年通过并行计算部分缓解了这一问题,但对现代标准来说仍然是计算密集型的。

        (2)内存需求大:

        显存消耗大:AlexNet模型较大,对显存的需求很高,特别是在处理高分辨率图像或大批量训练时,需要高性能的GPU支持。

        (3)结构相对复杂:

        实现复杂:相对于更现代的网络结构,AlexNet的设计在某些方面较为复杂,如分离到两个GPU上进行并行计算,增加了实现和调试的难度。

        (4)相对较浅:

        网络深度不足:虽然AlexNet在当时是非常深的网络,但相比于后来如VGGNet、ResNet等更深的网络,其深度仍然不足,限制了其捕捉更复杂特征的能力。

        (5)卷积核较大:

        大卷积核:AlexNet使用了较大的卷积核(如11x11),这在一定程度上增加了计算量。现代网络倾向于使用更小的卷积核(如3x3)来减少参数量和计算复杂度。

4.2VGG Net模型

4.2.1VGG Net模型简介  

        VGG可以看成是加深版的AlexNet,整个网络由卷积层和全连接层叠加而成,和AlexNet不同的是,VGG中使用的都是小尺寸的卷积核(3×3)。

        结构简洁,如下图VGG-19的网络结构

4.2 VGGNet网络结构

        VGG中使用的都是3×3卷积核,并且使用了连续多个卷积层。这样做的好处:

        使用连续的的多个小卷积核(3×3),来代替一个大的卷积核,例如(5×5)。

        使用小的卷积核的问题是,其感受野必然变小。所以,VGG中就使用连续的3×3卷积核,来增大感受野。VGG认为2个连续的3×3卷积核能够替代一个5×5卷积核,三个连续的3×3能够代替一个7×7。

        小卷积核的参数较少。3个3×3的卷积核参数为3×3×=27,而一个7×7的卷积核参数为7×7=49。由于每个卷积层都有一个非线性的激活函数,多个卷积层增加了非线性映射。

4.2.2VGG Net网络结构

        VGG网络相比AlexNet层数多了不少,但是其结构却简单不少。

        1.VGG的输入为224×224×3的图像

        2.对图像做均值预处理,每个像素中减去在训练集上计算的RGB均值。

        3.网络使用连续的小卷积核(3×3)做连续卷积,卷积的固定步长为1,并在图像的边缘填充1个像素,这样卷积后保持图像的分辨率不变。

        4.连续的卷积层会接着一个池化层,降低图像的分辨率。空间池化由五个最大池化层进行,这些层在一些卷积层之后(不是所有的卷积层之后都是最大池化)。在2×2像素窗口上进行最大池化,步长为2。

        5.卷积层后,接着的是3个全连接层,前两个每个都有4096个通道,第三是输出层输出1000个分类。

        6.所有的隐藏层的激活函数都使用的是ReLU

        7.使用1×1的卷积核,为了添加非线性激活函数的个数,而且不影响卷积层的感受野。

        8.没有使用局部归一化,发现局部归一化并不能提高网络的性能。

4.3 网络结构

        所有网络结构都遵从上面提到的设计规则,并且仅是深度不同,也就是卷积层的个数不同:从网络A中的11个加权层(8个卷积层和3个FC层)到网络E中的19个加权层(16个卷积层和3个FC层)。卷积层的宽度(通道数)相当小,从第一层中的64开始,然后在每个最大池化层之后增加2倍,直到达到512。

        上图给出了各个深度的卷积层使用的卷积核大小以及通道的个数。最后的D,E网络就是大名鼎鼎的VGG-16和VGG-19了。

        AlexNet仅仅只有8层,其可训练的参数就达到了60M,VGG系列的参数就更恐怖了,如下图(单位是百万)

4.4 VGG系列参数

4.2.3VGG Net优缺点

        1.VGG优点

        (1)简单而统一的架构:

        统一的卷积核大小:VGGNet采用3x3的卷积核和2x2的池化核,结构简单而统一,易于理解和实现。

        层次堆叠:通过简单地堆叠多个卷积层和池化层,VGGNet实现了更深的网络结构。这种设计思路非常直观,使得网络设计和修改变得更加容易。

        (2)深度带来的表达能力:

        深度优势:相比于早期的卷积神经网络,VGGNet通过增加网络深度(如VGG-16、VGG-19)显著提高了模型的表达能力,使其能够捕捉到更复杂的特征。

        (3)迁移学习的良好选择:

        预训练模型:由于其在ImageNet上的优秀表现,VGGNet的预训练模型被广泛用于迁移学习任务中,成为许多计算机视觉应用的基础模型。

        (4)良好的性能:

        高性能:VGGNet在多个计算机视觉任务中的表现都非常出色,尤其在图像分类任务中,其深度结构能够有效提高模型的准确性。

        (5)标准化设计:

        模块化设计:VGGNet的层次设计模块化强,方便不同的应用场景进行修改和适配。

        2.VGG缺点

        (1)计算资源需求高:

        参数量大:VGGNet采用较多的卷积层,导致模型参数量巨大。以VGG-16为例,其参数量接近138M,这使得模型训练和存储成本较高。

        计算复杂度高:大量的卷积操作和全连接层带来了巨大的计算量,导致VGGNet对计算资源的需求非常高,训练和推理时间较长。

        (2)内存需求高:

        显存消耗大:由于模型参数多,VGGNet对显存的需求非常大,尤其在处理高分辨率图像或进行批量训练时,需要高性能的GPU支持。

        (3)效率问题:

        速度较慢:VGGNet的深度和复杂性导致其在实际应用中速度较慢,不适用于实时性要求高的应用场景。

        (4)结构固定:

        灵活性差:VGGNet的结构较为固定,不像一些后来的网络(如ResNet)具有更灵活的残差块设计,不能轻松地进行深度调整和扩展。

        (5)潜在的过拟合风险:

        过拟合:由于网络深度和参数量较大,如果训练数据不足或数据增强不充分,VGGNet可能容易发生过拟合。

4.3ResNet模型

4.3.1ResNet模型简介

        ResNet的经典网络结构有:ResNet-18、ResNet-34、ResNet-50、ResNet-101、ResNet-152几种,其中,ResNet-18和ResNet-34的基本结构相同,属于相对浅层的网络,后面3种的基本结构不同于ResNet-18和ResNet-34,属于更深层的网络。

4.3.2ResNet网络结构

        ResNet18的18层代表的是带有权重的18层,包括卷积层和全连接层,不包括池化层和BN层。

        ResNet18 使用的是BasicBlock。layer1特点是没有进行降采样,卷积层的stride=1,不会降采样。在进行shortcut连接时,也没有经过downsample层。

4.2 ResNet网络结构

        表格中提到了五种深度的ResNet,分别是18,34,50,101,152。表格的最左侧是说明无论是深度为多少的ResNet都将网络分成了五部分。分别是:conv1,conv2_x,conv3_x,conv4_x,conv5_x。而仔细观察图,可以得出一下几个结论。

        1.从50-layer之后,conv2——conv5都是采取三层块结构以减小计算量和参数数量。

        2.说明50-layer以后开始采用BottleBlock。

        3.从50-layer之后,层数的加深仅仅体现在conv4_x这一层中,也就是output size为14×14的图像。

4.3.3ResNet优缺点

        1.ResNet优点

        (1)解决深度神经网络的退化问题:

        残差学习:ResNet引入了残差块(Residual Block)的概念,通过增加“快捷连接”(skip connections)直接将输入信息传递到更深层的网络中。这种结构可以有效缓解随着网络深度增加而出现的梯度消失和梯度爆炸问题,使得网络更容易训练。

        极深网络:使用残差单元,ResNet可以训练出非常深的网络(如ResNet-50、ResNet-101、ResNet-152),而不会出现明显的性能退化问题。这使得ResNet可以捕获更复杂的特征。

        (2)高性能:

        卓越的性能:ResNet在多个基准数据集(如ImageNet、COCO)上的表现都非常出色,通常能够达到或超过其他主流的卷积神经网络结构的性能。

        (3)模块化设计:

        可扩展性:ResNet的结构模块化设计使得它可以很容易地扩展到更深的网络结构。通过简单地堆叠更多的残差块,可以创建更深的ResNet变体。

        (4)通用性强:

        广泛应用:ResNet不仅在图像分类任务中表现优异,还被广泛应用于目标检测、图像分割、人脸识别等多个计算机视觉任务中。

        (5)训练稳定性:

        训练更稳定:由于残差块的引入,ResNet的训练过程比传统的深层卷积神经网络更稳定,可以更快地收敛。

        2.ResNet缺点

        (1)计算资源需求高:

        计算量大:虽然ResNet的残差结构有助于缓解深度网络的退化问题,但它也引入了更多的计算开销和内存需求,尤其是在处理高分辨率图像或使用极深的网络时。

        硬件要求高:为了训练和部署ResNet,需要强大的计算硬件支持,如高性能的GPU,这对资源有限的应用场景可能不太适用。

        (2)结构复杂:

        模型复杂性:ResNet的网络结构较为复杂,特别是深层变体(如ResNet-152),这使得模型设计、调试和部署变得更加困难。

        (3)潜在的过拟合问题:

        过拟合风险:由于ResNet可以构建非常深的网络结构,如果训练数据不足或数据增强不充分,可能会导致模型过拟合。

        (4)对数据预处理敏感:

        数据依赖:ResNet对输入数据的预处理较为敏感,通常需要进行标准化、归一化等预处理步骤,否则可能会影响模型的性能。

5模型代码说明

5.1神经网络模型代码说明

5.1.1神经网络模型训练代码  

        该函数用于训练神经网络模型,并在每个训练轮次后验证模型性能,跟踪损失和准确率,并在训练过程中动态调整学习率。

def train_model(model, dataloaders, dataset_sizes, criterion, optimizer, scheduler, num_epochs=30):

    """ 训练模型 """

    # 计时

    since = time.time()



    best_model = copy.deepcopy(model.state_dict())

    best_acc = 0.0                # 最佳准确率

    best_train_acc = 0.0          # 最佳训练准确率

    history = defaultdict(list)  # 准确率和损失值的保存



    for epoch in range(1, num_epochs + 1):

        print(f'第{epoch}轮/共{num_epochs}轮')



        # 每轮分为训练和验证两个阶段

        for phase in ['train', 'validation']:

            if phase == 'train':

                model.train()  # 训练模式

            else:

                model.eval()  # 验证模式



            accumulative_loss = 0.0      # 实时的损失

            accumulative_corrects = 0.0  # 实时的准确率



            # 迭代

            for imgs, labels in dataloaders[phase]:

                imgs = imgs.to(device)

                labels = labels.to(device)



                # 梯度清零

                optimizer.zero_grad()  # 每次梯度要置零,不能累加



                # 仅在训练阶段才进行优化

                with torch.set_grad_enabled(phase == 'train'):

                    # 前向算法

                    outputs = model(imgs)

                     # 对模型输入进行前向传播,得到模型的输出。这里假设模型是一个分类模型,outputs 是模型的预测结果。

                    _, preds = torch.max(outputs, 1)

                    # 从模型的输出中,取出每个样本预测的最大值及其对应的索引。在分类任务中,通常选择预测概率最高的类别作为最终的预测结果。

                    loss = criterion(outputs, labels)

                    # 使用给定的损失函数 criterion 计算模型的预测结果和真实标签之间的损失。损失函数的设计与任务类型有关,常见的有交叉熵损失函数等。

                   

                # 训练阶段才需要后向算法和优化

                    if phase == 'train':

                        loss.backward()  # 反向传播

                        optimizer.step()



                # 累加性能统计

                accumulative_loss += loss.item() * imgs.size(0)

                accumulative_corrects += torch.sum(preds == labels.data)

            if phase == 'train':

                scheduler.step()  # 学习率自动调整

                epoch_train_acc = accumulative_corrects.double() / dataset_sizes[phase]  # 计算训练准确率

                epoch_train_acc = epoch_train_acc.cpu()

                best_train_acc = max(epoch_train_acc, best_train_acc)  # 更新最佳训练准确率

            else:

                epoch_val_acc = accumulative_corrects.double() / dataset_sizes[phase]  # 计算验证准确率

                epoch_val_acc = epoch_val_acc.cpu()

                print(f'验证准确率: {epoch_val_acc :.4%}')  # 输出验证准确率

            epoch_loss = accumulative_loss / dataset_sizes[phase]  # 计算损失值

            epoch_acc = accumulative_corrects.double() / dataset_sizes[phase]  # 计算准确率

            epoch_acc = epoch_acc.cpu()

            print(f'{"训练" if phase == "train" else "验证"}损失: {epoch_loss :.4f} 准确率: {epoch_acc :.4%}')



            # 保存结果

            if phase == 'train':

                history['train_acc'].append(epoch_acc)

                history['train_loss'].append(epoch_loss)

            else:

                history['val_acc'].append(epoch_acc)

                history['val_loss'].append(epoch_loss)



            # 保存模型

            if phase == 'validation':

                if epoch_acc > best_acc:

                    best_acc = epoch_acc

                    best_model = copy.deepcopy(model.state_dict())

                    torch.save(best_model, 'best_model.pt')  # 保存最佳模型



    # 计算耗时

    time_elapsed = time.time() - since

    print(f"训练耗时:{time_elapsed // 60 :.0f}分{time_elapsed % 60 :.0f}秒")

    print(f"最佳训练准确率:{best_train_acc :.4%}")  # 输出最佳训练准确率

    print(f"最佳验证准确率:{best_acc :.4%}")



    # 加载最佳模型权重

    model.load_state_dict(best_model)

    return model, history

5.1.2神经网络模型测试代码  

        使用训练好的模型对测试数据进行预测,并计算模型在测试数据集上的准确率。

def test(model, data_loader, n_examples, device):
    net = model# 将模型赋值给net
    net = net.to(device)
    correct_predons = 0#累加准确率的变量,初始化正确预测数量的变量为0
    with torch.no_grad(): # 在测试过程中不需要计算梯度
        for inputs, targets in data_loader: # 遍历数据加载器中的数据
            inputs = inputs.to(device)
            targets = targets.to(device)
            outputs = model(inputs)   # 用模型进行前向传播,得到预测输出
            _, preds = torch.max(outputs, dim=1)  # 获取最大概率值下标,获取每个样本预测输出的最大概率值对应的类别
            correct_predons += torch.sum(preds == targets)  # 累计判断正确的数量,计算模型预测正确的数量,累加到correct_predictions中
    return correct_predons / n_examples# 计算模型在整个数据集上的准确率

5.1.3神经网络模型验证代码  

        在验证集上评估训练好的模型的性能,计算模型在验证数据集上的准确率,并可选择性地打印每个样本的预测结果和真实标签。

def test(model, data_loader, n_examples, device):
    net = model# 将模型赋值给net
    net = net.to(device)
    correct_predons = 0#累加准确率的变量,初始化正确预测数量的变量为0
    with torch.no_grad(): # 在测试过程中不需要计算梯度
        for inputs, targets in data_loader: # 遍历数据加载器中的数据
            inputs = inputs.to(device)
            targets = targets.to(device)
            outputs = model(inputs)   # 用模型进行前向传播,得到预测输出
            _, preds = torch.max(outputs, dim=1)  # 获取最大概率值下标,获取每个样本预测输出的最大概率值对应的类别
            correct_predons += torch.sum(preds == targets)  # 累计判断正确的数量,计算模型预测正确的数量,累加到correct_predictions中
    return correct_predons / n_examples# 计算模型在整个数据集上的准确率

5.2模型及超参数代码

        数据集中有15000多张图片,按照6:2:2分配给‘train’、‘validation’、‘test’文件。在模型训练之前还对超参数进行调整。有以下几个超参数:

        1.学习率(learning rate),它决定了每次参数更新的步长大小。

        2.动量(momentum),它可以加速参数更新,并有助于跳出局部最优点。

        3.学习率调度器(scheduler)中的步长参数,表示在多少个轮次之后要调整学习率。

        4.学习率调度器中的衰减率,表示每次调整学习率时,将当前学习率乘以多少。

        5.权重衰减(Weight Decay):用于控制模型参数的正则化项,可以防止模型过拟合。它在优化器的构造函数中通过weight_decay参数设置。

        6.批量大小(Batch Size):每次迭代中用于更新模型的样本数目。通常需要根据硬件设备(如GPU显存大小)和训练效果进行调整。

        7.迭代次数(Number of Epochs):训练过程中总共迭代的次数,也就是训练轮数。需要根据训练集的大小和模型的收敛速度进行调整。

        8.学习率衰减策略(Learning Rate Decay Policy):除了StepLR之外,还有其他的学习率衰减策略,如ExponentialLR、ReduceLROnPlateau等。不同的衰减策略适用于不同的场景。

        9.损失函数的选择(Loss Function):不同的任务可能需要选择不同的损失函数,例如分类任务通常使用交叉熵损失,而回归任务可能使用均方误差损失。

# 超参数

epochs = 15            #轮次,迭代次数

batch_size = 30          #图片一组,批量大小



# 交叉熵损失

#创建了一个交叉熵损失函数的实例,并将其赋值给变量criterion。

#交叉熵损失通常用于多分类任务中,它将模型输出的概率分布与真实标签的分布进行比较,计算模型输出与真实标签之间的差异。

criterion = nn.CrossEntropyLoss()

# 优化器

#创建了一个随机梯度下降(SGD)优化器的实例,并将其赋值给变量optimizer_fe。SGD优化器将用于调整模型参数以最小化损失函数。

#参数lr设置了初始学习率为0.002,momentum参数设置了动量为0.9。动量可以加快收敛速度,并有助于跳出局部最优点。

optimizer_fe = optim.SGD(model_fer.parameters(), lr=0.001, momentum=0.9)

#weight_decay=1e-4,添加了权重衰减。

# 每隔step_size轮衰减学习率gamma倍

#创建了一个学习率调度器的实例,并将其赋值给变量scheduler。StepLR调度器将在每个step_size轮之后将学习率按照gamma的倍数进行衰减。

#学习率将每隔2轮衰减为原来的10%。学习率衰减有助于模型更好地收敛到最优解,并减少训练后期的震荡。

scheduler = lr_scheduler.StepLR(optimizer_fe, step_size=2, gamma=0.1)#学习率自动调整

5.2.1AlexNet模型  

# 模型

def create_model(n_classes):

    # 使用预训练的AlexNet模型

    model = models.alexnet(pretrained=True)

    

    # # 冻结网络全部权重参数,避免在训练过程中更新它们

    for param in model.parameters():

        param.requires_grad = False

    

    # 获取原始分类器的输入特征数

    n_inputs = model.classifier[6].in_features      #4096

    

    # 创建新的输出层,匹配新的类别数

    #创建了一个新的全连接层last_layer,将它的输入特征数设置为原始分类器的输入特征数(4096),输出特征数设置为指定的类别数量len(n_classes)。

    last_layer = nn.Linear(n_inputs, len(n_classes))

    # 替换模型的最后一层全连接层

    model.classifier[6] = last_layer

         

    return model

5.2.2ResNet模型  

# 模型

def create_model(n_classes):

    # 使用预训练的ResNet-18模型作为特征提取器

    model_fe = models.resnet18(pretrained=True)
 

    # 冻结网络全部权重参数,即在训练过程中不更新预训练模型的参数

    for param in model_fe.parameters():

        param.requires_grad = False


    # 重新设置全连接层

    # 获取原始模型的最后一层全连接层的输入特征数

    num_features = model_fe.fc.in_features


    # 用新的全连接层替换原始模型的最后一层全连接层

    # 这里的全连接层的输出维度被设置为指定的类别数

    model_fe.fc = nn.Linear(num_features, len(n_classes))     

    return model_fe

5.2.3VGG Net模型  

# 模型

def create_model(n_classes):

    # 使用预训练的VGG-16模型或19作为特征提取器

    model_fe = models.vgg19(pretrained=True)


    # 冻结网络全部权重参数,即在训练过程中不更新预训练模型的参数

    for param in model_fe.parameters():

        param.requires_grad = False


    # 设置自定义全连接层的参数为需要梯度跟踪

    for param in model_fe.classifier.parameters():

        param.requires_grad = True

    # 重新设置全连接层

    # 获取原始模型的最后一层全连接层的输入特征数

    num_features = model_fe.classifier[6].in_features

    
    # 用新的全连接层替换原始模型的最后一层全连接层

    # 这里的全连接层的输出维度被设置为指定的类别数

    model_fe.fc = nn.Linear(num_features, len(n_classes))
         

    return model_fe

6模型测评 

6.1AlexNet模型

        当轮次设置15、每次以30张照片为一组、学习率为0.002、momentum参数设置了动量为0.9、调度器步长为2、衰减率为0.1时,训练时的最佳准确率为82.4333%,测试准确率为76.7333%,训练耗时15分17秒。所示

        其生成损失值和准确率图像如图 6.1 基于AlexNet模型的垃圾分类识别1所示。

6.1 基于AlexNet模型的垃圾分类识别1

        当轮次设置30、每次以30张照片为一组、学习率为0.01、momentum参数设置了动量为0.9、调度器步长为2、衰减率为0.1时,训练时的最佳准确率为81.3500%,测试准确率为76.2166%,训练耗时28分28秒。所示

        其生成损失值和准确率图像如图 6.2 基于AlexNet模型的垃圾分类识别2所示。

6.2 基于AlexNet模型的垃圾分类识别2

6.2ResNet模型

        当轮次设置15、每次以30张照片为一组、学习率为0.002、momentum参数设置了动量为0.9、调度器步长为2、衰减率为0.1时,训练时的最佳准确率为80.3000%,测试准确率为78.1667%,训练耗时16分3秒。

        其生成损失值和准确率图像如图 6.3 基于ResNet18模型的垃圾分类识别1所示。

6.3 基于ResNet18模型的垃圾分类识别1

        当轮次设置30、每次以30张照片为一组、学习率为0.01、momentum参数设置了动量为0.9、调度器步长为2、衰减率为0.1时,训练时的最佳准确率为84.7167%,测试准确率为81.0999%,训练耗时29分25秒。

        其生成损失值和准确率图像如图 6.4 基于ResNet18模型的垃圾分类识别2所示。

6.4 基于ResNet18模型的垃圾分类识别2

        当轮次设置20、每次以30张照片为一组、学习率为0.01、momentum参数设置了动量为0.9、调度器步长为2、衰减率为0.1时,训练时的最佳准确率为88.6333%,测试准确率为84.2833%,训练耗时29分8秒。

        其生成损失值和准确率图像如图 6.5 基于ResNet152模型的垃圾分类识别1所示。

6.5 基于ResNet152模型的垃圾分类识别1

6.3VGGNet模型

        当轮次设置15、每次以30张照片为一组、学习率为0.002、momentum参数设置了动量为0.9、调度器步长为2、衰减率为0.1时,训练时的最佳准确率为83.8500%,测试准确率为82.1500%,训练耗时20分15秒。

        其生成损失值和准确率图像如图 6.6 基于VGGNet-16模型的垃圾分类识别1所示。

6.6 基于VGGNet-16模型的垃圾分类识别1

当轮次设置30、每次以30张照片为一组、学习率为0.01、momentum参数设置了动量为0.9、调度器步长为2、衰减率为0.1时,训练时的最佳准确率为83.1000%,测试准确率为83.7000%,训练耗时35分56秒。

其生成损失值和准确率图像如图 6.7 基于VGGNet-16模型的垃圾分类识别2所示。

6.7 基于VGGNet-16模型的垃圾分类识别2

当轮次设置15、每次以30张照片为一组、学习率为0.002、momentum参数设置了动量为0.9、调度器步长为2、衰减率为0.1时,训练时的最佳准确率为90.0000%,测试准确率为86.8000%,训练耗时21分13秒。

其生成损失值和准确率图像如图 6.8 基于VGGNet-19模型的垃圾分类识别1所示。

6.8 基于VGGNet-19模型的垃圾分类识别1

当轮次设置30、每次以30张照片为一组、学习率为0.01、momentum参数设置了动量为0.9、调度器步长为2、衰减率为0.1时,训练时的最佳准确率为84.0833%,测试准确率为84.1499%,训练耗时77分51秒。

其生成损失值和准确率图像如图 6.9 基于VGGNet-19模型的垃圾分类识别2所示。

6.9 基于VGGNet-19模型的垃圾分类识别2

6.4总结对比

        以下是不同模型和训练设置下的垃圾分类识别结果的表格:

模型

轮次

每组照片数量

学习率

训练最佳准确率

测试准确率  

 训练耗时     

AlexNet   

15   

30

0.002  

82.4333%       

76.7333%    

15分17秒     

AlexNet   

30   

30           

0.01   

81.3500%       

76.2166%    

28分28秒     

ResNet18  

15   

30           

0.002  

80.3000%       

78.1667%    

16分3秒      

ResNet18  

30   

30           

0.01   

84.7167%       

81.0999%    

29分25秒     

ResNet152

20   

30           

0.01   

88.6333%       

84.2833%    

29分8秒      

VGGNet-16

15   

30           

0.002  

83.8500%       

82.1500%    

20分15秒     

VGGNet-16

30   

30

0.01   

83.1000%       

83.7000%    

35分56秒     

VGGNet-19

15   

30           

0.002  

90.0000%       

86.8000%    

21分13秒     

VGGNet-19

30   

30           

0.01   

84.0833%       

84.1499%    

77分51秒     

        在此次实验中,我们对比了AlexNet、ResNet和VGGNet三种不同的深度学习模型在垃圾分类任务上的表现。 

        (1)VGGNet-19

        在实验中,VGGNet-19模型在15轮次时表现最佳,训练准确率达到了90.0000%,而测试准确率为86.8000%。这种表现表明该模型在训练集上具有很高的拟合能力,同时在测试集上的准确率也非常接近训练集的表现,显示了较好的泛化能力。泛化能力是指模型在面对未见过的数据时,仍能保持较高的预测准确率。VGGNet-19的这种表现可能得益于其深度结构和强大的特征提取能力,使得它在较短的训练时间内能够有效地捕捉到数据的复杂模式,并在测试集上保持稳定的性能,在未见过的数据上也保持较高的预测准确率。这样的性能对于需要高精度分类任务的应用场景非常适合。

        当训练轮次增加到30时,VGGNet-19的训练时间显著增加,达到77分51秒。虽然训练时间几乎翻倍,但训练准确率和测试准确率并未有显著提升,分别为84.0833%和84.1499%。这表明在增加训练轮次后,模型的性能提升不明显,可能出现了过拟合问题。因此,在实际应用中,需要根据具体任务的需求,权衡训练时间和模型性能,以选择最优的训练轮次。

        (2)ResNet152

        ResNet152模型在20轮次时也表现出了相对较好的性能,训练准确率为88.6333%,测试准确率为84.2833%。尽管训练准确率略低于VGGNet-19,但测试准确率相对较高,表明ResNet152同样具有较强的泛化能力。这一表现可能源于ResNet152独特的残差结构(Residual Structure),它通过跳跃连接(skip connections)缓解了深度神经网络训练中的梯度消失问题,使得模型在更深的层次上仍能有效地进行训练。尽管训练轮次比VGGNet-19多了5轮,但其训练时间和计算资源消耗并未显著增加,因此在资源允许的情况下,ResNet152也是一个非常值得考虑的模型。

        (3)AlexNet 和 ResNet18

        相比之下,AlexNet和ResNet18在训练轮次增加时,虽然训练时间明显增长,但测试准确率却没有显著提升,甚至有所下降。这种现象通常表明模型可能出现了过拟合问题。过拟合是指模型在训练集上表现很好,但在测试集上表现不佳,说明模型过度学习了训练集中的噪声和细节,而没有很好地捕捉到数据的整体模式。具体来说:

        AlexNet:虽然在15轮次时,AlexNet的表现已经达到了82.4333%的训练准确率和76.7333%的测试准确率,但当训练轮次增加到30时,训练准确率反而下降至81.3500%,测试准确率也降至76.2166%。这种趋势显示出,随着训练时间的延长,AlexNet未能进一步提高其在测试集上的表现,甚至由于过拟合问题,模型性能有所下降。

        ResNet18:在15轮次时,训练时间为16分3秒,ResNet18的训练准确率为80.3000%,测试准确率为78.1667%。而当轮次增加到30时,虽然训练准确率有所提升,但测试准确率仅略微提高或保持不变。这种情况也表明,ResNet18在增加训练时间后,并未能显著提高其泛化能力,模型的复杂性和深度可能不足以有效应对更长时间的训练而不产生过拟合。

        综合来看,模型的选择不仅要考虑训练准确率和测试准确率,还要关注训练时间和计算资源的消耗。VGGNet-19和ResNet152在较短的训练时间内达到了较高的准确率,显示了其强大的特征提取和泛化能力,是垃圾分类识别任务中的优选模型。这使得VGGNet-19成为在计算资源充足且对精度要求高的任务中的最佳选择。ResNet152和VGGNet-16则在时间和性能上提供了较好的平衡,是另一种值得考虑的选择,特别是在需要较高精度但训练时间相对有限的场景中。而AlexNet和ResNet18虽然在训练速度上有优势,但其准确率略逊一筹,适用于计算资源有限且对准确率要求不高的任务。并且在训练轮次增加后表现并不如预期,在实际应用中需要谨慎设置训练轮次和其他超参数,以避免过拟合问题。

        在实际应用中,选择合适的模型需要综合考虑训练时间、计算资源和准确率要求。因此,基于具体需求和资源,在垃圾分类识别任务中:

        优先选择VGGNet-19,以获得最高的准确率和稳定性能。

        其次选择ResNet152,以在训练时间和性能之间取得较好平衡。

        选择AlexNet或ResNet18,用于资源受限且需要快速训练的场景。

7总结

7.1任务收获

        在基于PyTorch框架的智能垃圾分类系统优化与实践的开发中,我们获得了许多宝贵的任务收获,以下是我们在项目中所学到的关键经验和技能:

        一、深度学习的基本流程与框架应用

        数据准备与预处理:在项目的初期,我们花费了大量时间进行数据的收集与清洗。数据的质量直接影响到模型的性能,因此我们对数据进行了严格的预处理,包括去除噪声、标签校正、数据增强等步骤。通过这些操作,我们确保了模型输入的数据足够准确和多样,提高了模型的泛化能力。

        PyTorch框架的掌握:通过本项目,我们深入学习了PyTorch的基本用法和高级特性。我们学会了如何定义数据集类、使用DataLoader进行数据加载,以及如何搭建复杂的神经网络模型。PyTorch的灵活性和高效性使我们能够快速迭代模型,不断优化其性能。

        二、模型构建与优化

        模型选择与设计:在项目中,我们选择了卷积神经网络(CNN)作为基础模型架构。CNN在图像分类任务中表现优异,能够有效提取图像的局部特征。我们在此基础上进行了一些改进,比如添加更多的卷积层和池化层,以提高模型的表达能力。

        超参数调优:我们对模型的超参数进行了大量实验,包括学习率、批次大小、优化器类型等。通过调优这些超参数,我们找到了最佳的训练配置,使模型能够在较短时间内达到最佳性能。

        使用学习率调度器:学习率是影响模型训练速度和效果的重要因素。我们在训练过程中使用了学习率调度器,根据模型在验证集上的表现动态调整学习率。这一策略显著提高了模型的收敛速度,并避免了训练过程中的振荡现象。

        三、训练与验证

        训练过程的监控:在模型训练过程中,我们使用了准确率和损失值作为主要监控指标。通过这些指标,我们能够实时了解模型的训练状态,并及时进行调整。我们还使用了TensorBoard等可视化工具,直观展示训练过程中的各项指标变化,帮助我们更好地理解和优化模型。

        过拟合与欠拟合的处理:在训练初期,我们遇到了模型过拟合的问题。为了解决这个问题,我们采用了数据增强、正则化等技术,增加了训练数据的多样性,并在模型中引入了Dropout层。这些措施有效地缓解了过拟合现象,提高了模型在验证集上的表现。

        四、模型评估与部署

        模型评估:在模型评估阶段,我们使用了多种评估指标,包括准确率、精确率、召回率、F1分数等。通过这些指标,我们全面评估了模型的性能,确保其在各种情况下都能保持良好的分类效果。

        模型部署:在完成模型训练和评估后,我们将最佳模型部署到实际应用中。我们编写了RESTful API接口,方便其他系统调用模型进行垃圾分类。通过实际应用中的反馈,我们进一步优化了模型和系统,确保其在真实环境中稳定运行。

        五、实践中的挑战与解决方案

        计算资源限制:在项目中,我们遇到了计算资源不足的问题。深度学习模型的训练需要大量的计算资源,尤其是在处理大规模数据集时。为了解决这个问题,我们利用了云计算平台和GPU加速技术,大大缩短了训练时间,提高了工作效率。

        数据不平衡问题:在垃圾分类任务中,不同类别的样本数量差异较大,这导致模型在某些类别上的性能较差。为了解决这个问题,我们采用了数据采样和加权损失函数等方法,平衡各类别的样本数量,使模型在各类别上表现更加均衡。

        六、个人成长与专业技能提升

        深度学习知识的深化:通过这个项目,我们系统学习了深度学习的理论知识和实践技巧。我们不仅掌握了神经网络的基本原理,还深入了解了卷积神经网络、正则化、超参数调优等高级主题。

        编程技能的提高:在项目开发过程中,我们不断提升自己的编程技能。我们熟练掌握了PyTorch的使用方法,并学会了编写高效、可维护的代码。此外,通过解决实际问题,我们的调试和解决问题的能力也得到了显著提高。

7.2心得体会

        在本项目中,我们深刻体会到数据预处理在深度学习中的重要性。原始数据往往包含噪声和不一致性,直接使用这些数据进行训练会导致模型性能下降。通过数据预处理,我们可以清理数据,提高数据质量,进而提高模型的训练效果。具体的预处理步骤包括图像的缩放、裁剪、归一化等,这些操作不仅有助于提升模型的泛化能力,还能减少模型的训练时间。

        数据增强也是预处理的重要环节。通过数据增强,我们可以在有限的训练数据上生成更多的变体,如旋转、翻转、裁剪等操作,这样可以有效防止模型过拟合,使其在面对新数据时表现更佳。我们在项目中尝试了多种数据增强技术,明显感受到模型性能的提升。

        选择合适的模型架构是深度学习成功的关键之一。不同任务对模型的要求不同,因此理解和选择合适的模型架构非常重要。我们选择了卷积神经网络(CNN)作为模型架构,这是因为CNN在图像处理方面表现出色,能够有效提取图像特征。

        在实际训练中,我们尝试了不同的模型深度和结构,调整了卷积层、池化层和全连接层的数量和参数。通过这些调整,我们逐步优化了模型的结构,使其能够更好地捕捉图像中的特征,提高分类准确率。这个过程让我们深刻理解了模型架构对最终性能的影响,也让我们掌握了调整模型参数的方法和技巧。

        训练过程中的监控与调试是深度学习项目成功的另一个关键因素。在训练模型时,我们需要不断监控模型在训练集和验证集上的表现,及时发现问题并进行调整。在项目中,我们使用了准确率和损失值作为监控指标,通过这些指标可以判断模型的学习情况。

        我们还学会了使用TensorBoard等工具进行可视化监控,这些工具可以帮助我们直观地看到模型的训练过程和性能变化,及时发现和解决问题。例如,当我们发现验证集上的准确率没有提高时,可能是因为模型过拟合或者学习率设置不合理。通过调整超参数和优化策略,我们可以改善模型性能。

        学习率是影响模型训练速度和效果的重要超参数。在项目中,我们使用了学习率调度器来动态调整学习率。开始时设置较高的学习率,可以让模型快速收敛;随着训练的进行,逐步降低学习率,可以使模型在接近最优解时更加稳定。我们使用了学习率衰减策略,在每个epoch结束时根据验证集的表现调整学习率,这有效地提高了模型的收敛速度和最终性能。

        深度学习是一个快速发展的领域,新技术和新方法不断涌现。通过这个项目,我们不仅学到了现有的技术,还意识到持续学习和改进的重要性。我们在项目中参考了许多最新的研究成果和技术,应用了最新的模型和优化方法,这使得我们的项目不仅在理论上有了新的突破,也在实际应用中取得了良好的效果。

        此外,我们还通过参与社区讨论、阅读最新论文和参加相关课程,不断更新我们的知识储备。这样的持续学习不仅让我们在项目中取得了良好的成绩,也为我们未来在深度学习领域的探索打下了坚实的基础。

        在项目中,我们遇到了许多挑战,包括数据不平衡、模型过拟合、计算资源有限等问题。通过不断尝试和调整,我们逐步解决了这些问题,取得了令人满意的结果。这些实践中的挑战不仅锻炼了我们的技术能力,也提升了我们的解决问题的能力和抗压能力。

        最终,通过这个深度学习项目,我们不仅掌握了从数据预处理、模型构建到训练和评估的完整流程,还学会了如何在实际项目中应用这些技术。更重要的是,我们收获了团队合作的经验,提升了我们的沟通和协调能力。这些收获将对我们未来的学习和工作产生深远的影响。

        通过这个项目,我们不仅提高了对深度学习理论和实践的理解,还增强了编程和调试技能。这些经验将对我们未来的学习和工作产生深远的影响。总的来说,这次深度学习项目是一次宝贵的实践机会,让我们在理论和实践结合的过程中,提升了自己的专业技能和综合能力,为未来的深度学习研究和应用打下了坚实的基础。

  • 17
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我也想知道why

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值