【面试题】一条直线上N个线段所覆盖的总长度

问题描述:

现有一直线,从原点到无穷大。

这条直线上有N个线段。线段可能相交。

问,N个线段总共覆盖了多长?(重复覆盖的地区只计算一次)

================================================

解题思路:

可以将每个线段拆分成“单位1”

遍历所有线段,使用一个数组记录每个线段所走过的“单位1”

最后统计数组中被走过的中“单位1”的个数,即是所有线段覆盖的总长度了。

这里有个问题?数组的大小如何确定?

数组的大小应该是所有线段中最大的端点坐标。

 ===============================================

顺便想到一个问题。

给出若干个线段。求一共有几个“连通域”。就是将能合并的线段 合并成一个线段。

最后能合并出几个来?

利用上面的思想。非常简单。

只需遍历单位数组的时候做个开始和结尾的记录就行了。

程序实现如下。

===============================================

//此题要求
//求出一条直线上所有线段所覆盖的全程长度是多少。
//重叠的地方只计算一次。
//================================
//本算法的思想是,将每个线段进行像素化,
//添加到一个单位数组c[N]中
//遍历c数组判断哪些单位被覆盖到了,
//在count计数一下就知道一共覆盖了多少路程。
//真是巧妙啊。
//==============================
#include <iostream>
using namespace std;
const int N = 10000;
//线段结构体
struct Segment
{
	int start;
	int end;
};
//
int coverage(Segment *segments, int n)
{
	bool c[N]={false};//每个“单位1”是否被覆盖到

	int start=0;
	int end = 0;
	//遍历n个线段
	for(int i = 0; i < n; i++)
	{
		for(int j = segments[i].start; j < segments[i].end; j++)
		{
			c[j] = true;
		}
		//寻找最右端
		if(segments[i].end > end)
		{
			end = segments[i].end;
		}
		//寻找最左端
		if(segments[i].start < start)
		{
			start = segments[i].start;
		}
	}
	//从最左端开始到最右端。遍历单位数组C
	int count = 0;
	for(int i= start; i < end; i++)
	{
		if(c[i])
		{
			int s=i;
			while(c[i])
			{
				count++;
				i++;
			}
			int e=i;
			cout << "["<<s<<","<<e<<"]"<<endl;
		}
	}
	return count;
};

int main()
{
	Segment s1;
	s1.start = 1;
	s1.end = 3;

	Segment s2;
	s2.start = 2;
	s2.end = 6;

	Segment s3;
	s3.start = 11;
	s3.end = 12;

	Segment s4;
	s4.start = 10;
	s4.end = 13;
	Segment ss[] = {s1,s2,s3,s4};
	cout << "归并后"<<endl;
	cout <<"被覆盖总长度:" <<coverage(ss, sizeof(ss)/sizeof(ss[0]))<<endl;
}

输出结果如下:

归并后
[1,6]
[10,13]

被覆盖总长度
8

请按任意键继续. . .

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值