求两个数或多个数的最大公约数算法及其实现 (转自http://www.blogjava.net/renyangok)

一,两个数的最大公约数:

1、欧几里德算法


欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:

定理:gcd(a,b) = gcd(b,a mod b)

证明:a可以表示成a = kb + r,则r = a mod b
假设d是a,b的一个公约数,则有
d|a, d|b,而r = a - kb,因此d|r
因此d是(b,a mod b)的公约数

假设d 是(b,a mod b)的公约数,则
d | b , d |r ,但是a = kb +r
因此d也是(a,b)的公约数

因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证

欧几里德算法就是根据这个原理来做的,其算法用C++语言描述为:

 

void  swap( int   &  a,  int   &  b){ 
     
int  c  =  a; 
       a 
=  b; 
       b 
=  c; 


int  gcd( int  a, int  b){ 
     
if ( 0   ==  a ){ 
         
return  b; 
     } 
     
if 0   ==  b){ 
         
return  a; 
     } 
     
if (a  >  b){ 
         swap(a,b); 
     } 
     
int  c; 
     
for (c  =  a  %  b ; c  >   0  ; c  =  a  %  b){ 
           a 
=  b; 
           b 
=  c; 
     } 
     
return  b; 
}

 

2、Stein算法
欧几里德算法是计算两个数最大公约数的传统算法,它无论从理论还是从效率上都是很好的。但是有一个致命的缺陷,这个缺陷只有在大素数时才会显现出来。

考虑现在的硬件平台,一般整数最多也就是64位,对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过 64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算 128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。

Stein算法由J. Stein 1961年提出,这个方法也是计算两个数的最大公约数。和欧几里德算法 算法不同的是,Stein算法只有整数的移位和加减法,这对于程序设计者是一个福音。

为了说明Stein算法的正确性,首先必须注意到以下结论:

gcd(a,a) = a,也就是一个数和它自身的公约数是其自身
gcd(ka,kb) = k gcd(a,b),也就是最大公约数运算和倍乘运算可以交换,特殊的,当k=2时,说明两个偶数的最大公约数必然能被2整除

C ++/ java 实现 


//  c++/java stein 算法 
int  gcd( int  a, int  b){ 
     
if (a < b){ // arrange so that a>b 
          int  temp  =  a; 
           a 
=  b; 
           b
= temp; 
     } 
     
if ( 0 == b) // the base case 
         return  a; 
     
if (a % 2 == 0   &&  b % 2   == 0 ) // a and b are even 
          return   2 * gcd(a / 2 ,b / 2 ); 
     
if  ( a % 2   ==   0 ) //  only a is even 
          return  gcd(a / 2 ,b); 
     
if  ( b % 2 == 0  ) //  only b is even 
          return  gcd(a,b / 2 ); 
     
return  gcd((a + b) / 2 ,(a - b) / 2 ); //  a and b are odd 
}



二,多个数的最大公约数:(python实现:取出数组a中最小的,从2到最小的循环,找出其中最大的能被数组中所有数整除的那个数,就是最大公约数)

def gcd(a):
    a.sort()
    min 
=  a[ 0 ]
    result 
=   1
    
for  i  in  range( 2 , min + 1 ):
        flag 
=  True
        
for  j  in  a:
            
if  j  %  i  !=   0 :
                flag 
=  False
        
if  flag  ==  True:
            result 
=  i
    
return  result 

 

 

转自http://www.blogjava.net/renyangok

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值