【问题描述】
找出具有a+b+c个节点且高度最小的二叉树,满足以下条件:
-
-
a个节点具有2个子节点
-
b个节点具有1个子节点
-
c个节点没有子节点
-
如果不存在这样的树,则输出-1, 否则输出树的高度。
图示为a=2、b=1、c=3的满足条件的树,其高度为2。
树的高度是指从根节点到最底层叶节点之间的边数之和。
【输入形式】
输入的第一行为T,表示有T个测试样例,接下来的T行,每行3个整数a、b、c(0≤a、b、c≤105, a+b+c≥1),分别表示所构成的树有a+b+c个节点,其中a个节点具有2个子节点,b个节点具有1个子节点,c个节点没有子节点。
【输出形式】
输出为T行,每行一个整数,表示满足条件的树的最小高度,如果不存在这样的树,则输出-1。
【样例输入】
10 2 1 3 0 0 1 0 1 1 1 0 2 1 1 3 3 1 4 8 17 9 24 36 48 1 0 0 0 3 1
【样例输出】
2 0 1 1 -1 3 6 -1 -1 3
【样例说明】
【评分标准】
【思路分析】
这题不考算法,纯靠思维和对二叉树的理解。
首先,我们应该要知道,一棵二叉树,它的度为2的节点数和叶节点数是有关联的,只有一个结点时,度为2的节点数为0,叶节点数为1,而此后每有一个度为2的结点,叶节点数就会+1,这是很显然的一件事,具体证明舍去。因此,叶节点数c(即无子节点的结点数)与度为2的结点数a(有两个子节点)的关系为c=a+1。所以只要满足该关系即为一棵二叉树,否则不是二叉树。
要使所求二叉树高度最小,显然要使其尽可能成为一棵完全二叉树,因为相同结点数的所有树中,完全二叉树高度最小。但树中存在b个只有一个子结点的结点,完全成为完全二叉树显然不可能,所以只能退而求其次,先将子节点数为2的结点和无子结点的结点构成一棵完全二叉树(因为完全二叉树只有这两类结点),然后再在每个叶节点上平均地插入b个子节点数为1的结点,如此便可得到一棵满足题目要求的树。
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
int t;
cin>>t;
while(t--)
{
int a,b,c;
cin>>a>>b>>c;
//高度等于深度-1,即边数
if((a+1)!=c)//不满足二叉树的性质
{
cout<<-1<<'\n';
}
else if(a==0)//特判a为0,此时高度为b
{
cout<<b<<'\n';
}
else
{
int k=log(a)/log(2);//求出完全二叉树的高度
int x=(1<<(k+1))-a-1;//求出最底层右边空余的节点数
if(b<=x)//如果b不能使树再增高一层
cout<<k+1<<'\n';
else//否则就减去空余节点数除以叶节点数
{
b-=x;
cout<<(k+2+(b-1)/c)<<'\n';
}
}
}
return 0;
}