UVA1331 Minimax Triangulation

版权声明:本文为博主原创文章, 未经博主允许不得转载。 https://blog.csdn.net/bzjr_Log_x/article/details/79949661

Address


Description

  • 给定一个 n 条边的多边形(不一定是凸多边形),用 n3 条线段(线段必须连接多边形上的两点,每条线段都必须在多边形的内部,并且任意两条线段都不能在多边形内相交)把多边形剖分成 n2 个三角形,试找出一个切割方案,使得最大的三角形面积最小。

Input

  • 第一行一个整数 T 表示数据组数。
  • 每组数据的第一行一个整数 n
  • 接下来 n 行,按顺时针或逆时针顺序给出 n 边形的一个点 (x,y)

Output

  • 一个实数,表示最大面积,保留1位小数。

Sample Input

  • 6
    7 0
    6 2
    9 5
    3 5
    0 3
    1 1

Sample Output

  • 9.0

Solution

  • 先把点统一处理成逆时针顺序(若用叉积算多边形面积为负数则为顺时针)。
  • f[l][r] 表示从多边形上第 l 个点 Al 到第 r 个点 Ar 之间的区域全部分割成三角形后,最大三角形面积的最小值。
  • 注意因为多边形首尾顺次相接,l 可以大于 r
  • nxt[i]=i+1(1i<n),nxt[n]=1,则 DP 边界为 f[i][nxt[i]]=0
  • 转移为:f[l][r]=min{max{f[l][i], SAlAiAr, f[i][r]}}(AiAr×AiAr>0)
  • 注意题目给出的多边形不一定是凸多边形,可能存在如下情况:
  • 此时 AlAiAr 是不合法的,但同时我们也会发现用叉积计算结果为负数,因此 DP 就只要判断 AiAr×AiAr>0
  • 最后答案为 min{max{f[i][j], f[j][i]}}(ij)
  • 转移顺序不好处理,可用记忆化搜索实现。

Code

#include <iostream>
#include <cstdio>
#include <algorithm>

using namespace std;

const int Maxn = 0x3f3f3f3f;
const int N = 55;
int nxt[N], f[N][N], n, m, Ans;

struct point
{
    int x, y;

    point() {}
    point(int X, int Y):
        x(X), y(Y) {}

    friend inline point operator - (const point &a, const point &b) 
    {
        return point(b.x - a.x, b.y - a.y); 
    }

    friend inline int operator * (const point &a, const point &b)
    {
        return a.x * b.y - b.x * a.y;
    }
}a[N];

inline int Max(int x, int y) {return x > y ? x : y;}
inline int Min(int x, int y) {return x < y ? x : y;}
inline void CkMin(int &x, int y) {if (x > y) x = y;}

inline int dp(int l, int r)
{
    if (f[l][r] != -1) return f[l][r];
    if (r == nxt[l]) return f[l][r] = 0;
    int res = Maxn;
    for (int i = nxt[l]; i != r; i = nxt[i])
    {
        int tmp = (a[i] - a[r]) * (a[i] - a[l]);
        if (tmp > 0) CkMin(res, Max(Max(dp(l, i), tmp), dp(i, r)));
    }
    return f[l][r] = res;
}

int main()
{
    while (scanf("%d", &m) != EOF) 
    {
        while (m--) 
        { 
            scanf("%d", &n);
            for (int i = 1; i <= n; ++i) 
                scanf("%d%d", &a[i].x, &a[i].y);
            for (int i = 1; i < n; ++i)
                nxt[i] = i + 1; nxt[n] = 1;
            int sum = 0; 
            for (int i = 1; i < n; ++i)
                sum += a[i] * a[i + 1]; sum += a[n] * a[1];
            if (sum < 0)
                for (int i = 1, im = n >> 1; i <= im; ++i) 
                    swap(a[i], a[n - i + 1]);

            for (int i = 1; i <= n; ++i)
                for (int j = 1; j <= n; ++j)
                    f[i][j] = -1;
            for (int i = 1; i <= n; ++i)
                for (int j = 1; j <= n; ++j)    
                    if (i != j) dp(i, j);
            Ans = Maxn;
            for (int i = 1; i <= n; ++i)
                for (int j = 1; j <= n; ++j)
                    if (i != j) CkMin(Ans, Max(f[i][j], f[j][i]));
            printf("%.1lf\n", (double)Ans / 2.0);
        }
    }
    return 0;
} 
阅读更多
想对作者说点什么?
相关热词

博主推荐

换一批

没有更多推荐了,返回首页