BZOJ1151 [CTSC2007]动物园

58 篇文章 0 订阅

Address


Solution

  • 难得自己搞出来道DP~。
  • 因为小朋友能看到的围栏只有五个,容易想到用二进制表示这五个围栏里动物的状态(是否被移走)。
  • f[i][j] f [ i ] [ j ] 表示处理到第 i i 个围栏,第 i ~ i+4 i + 4 个围栏的状态为 j j 最多能使多少个小朋友高兴,num[i][j] 表示对应条件下仅确定这五个围栏的状态就能使多少小朋友高兴。
  • 则转移为 f[i][j]=max{f[i1][(j f [ i ] [ j ] = m a x { f [ i − 1 ] [ ( j & 15)<<1], f[i1][(j 15 ) << 1 ] ,   f [ i − 1 ] [ ( j & 15)<<1|1]}+num[i][j] 15 ) << 1 | 1 ] } + n u m [ i ] [ j ] ,即表示由第 i1 i − 1 个围栏移走或不移走转移过来。
  • 其中 num[i][j] n u m [ i ] [ j ] 可以预处理,预处理复杂度 O(25×c) O ( 2 5 × c )
  • 还有一个问题:如何处理环呢?也就是我们应如何处理前 4 个围栏的状态对最后几个围栏转移时的影响。
  • 我们不妨枚举前 5 个围栏的状态,每次都做一遍 DP D P ,第 n3 n − 3 ~ n n 个围栏即根据确定的状态转移,DP 复杂度 O(210×n) O ( 2 10 × n ) ,所以总复杂度 O(25×c+210×n) O ( 2 5 × c + 2 10 × n )

Code

#include <cstdio>
#include <cctype>
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

inline int get()
{
    char ch; int res = 0; bool flag = false;
    while (ch = getchar(), !isdigit(ch) && ch != '-');
    (ch == '-' ? flag = true : res = ch ^ 48);
    while (ch = getchar(), isdigit(ch))
        res = res * 10 + ch - 48;
    return flag ? -res : res;
}

const int Minn = -0x3f3f3f3f;
const int C = 32;
const int N = 1e4 + 5, M = 5e4 + 5;
int n, c, Ans;
int a[N], uk[M], vk[M];
int f[N][C], num[N][C];

inline int Max(int x, int y) {return x > y ? x : y;}
inline void CkMax(int &x, int y) {if (x < y) x = y;}
inline int nxt(int x) {return x == n ? 1 : x + 1;}

int main()
{
    n = get(); c = get(); int E, F, L, x;
    while (c--)
    {
        x = E = get(); F = get(); L = get();
        for (int i = 1; i <= 5; ++i) 
            a[x] = i, x = nxt(x);
        for (int i = 1; i <= F; ++i) uk[i] = get();
        for (int i = 1; i <= L; ++i) vk[i] = get(); 
        for (int i = 0; i < C; ++i)
        {
            bool flag = false;
            for (int j = 1; j <= F; ++j)
                if (a[uk[j]] && !(1 << a[uk[j]] - 1 & i))
                {
                    flag = true; 
                    break;
                }
            for (int j = 1; j <= L; ++j)
                if (a[vk[j]] && (1 << a[vk[j]] - 1 & i))
                {
                    flag = true;
                    break;
                }
            if (flag) ++num[E][i];
        }
        x = E;
        for (int i = 1; i <= 5; ++i)
            a[x] = 0, x = nxt(x);
    } 
    for (int k = 0; k < C; ++k)
    {
        x = k;
        for (int i = 1; i <= 5; ++i)
            a[i] = x & 1, x >>= 1;
        for (int i = 1; i <= n; ++i)
            for (int j = 0; j < C; ++j)
                f[i][j] = Minn;
        f[1][k] = num[1][k];
        for (int i = 2, im = n - 4; i <= im; ++i)
            for (int j = 0; j < C; ++j)
                CkMax(f[i][j], Max(f[i - 1][(j & 15) << 1], 
                                   f[i - 1][(j & 15) << 1 | 1]) + num[i][j]);
        for (int i = n - 3; i <= n; ++i)
        {
            int tmp = n - i + 1; 
            for (int j = 0, jm = 1 << tmp; j < jm; ++j)
            {
                x = j;
                for (int k = tmp + 1; k <= 5; ++k)
                    if (a[k - tmp]) x |= 1 << k - 1;    
                CkMax(f[i][x], Max(f[i - 1][(x & 15) << 1],
                                   f[i - 1][(x & 15) << 1 | 1]) + num[i][x]);           
            }   
        }
        for (int j = 0; j < C; ++j)
            CkMax(Ans, f[n][j]);
    }
    printf("%d\n", Ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值