title: 哈夫曼编码和译码 date: 2018-11-21 12:01:27 tags: [数据结构] categories: 数据结构
实验二 哈夫曼编码和译码
实验目的
1、熟悉二叉树的顺序存储结构;
2、熟悉二叉树的顺序存储结构和具体实现;
3、熟悉哈夫曼编码和译码,及其在顺序存储结构下的实现
实验要求:
1、根据输入构造一棵哈夫曼树,要求该哈夫曼树的左子树小于等于右子树;
2、根据构造的哈夫曼树给出对应的编码;左子树的编码为0,右子树的编码为1;
3、输出各个字符对应的编码与平均编码长度;
4、根据输入的编码,结合构造的哈夫曼树给出对应的译码
5、对带有不同权值的字符进行编码;使用自己实现的编码表对输入的‘0’‘1’代码进行译码
数据输入输出要求
输入示例
5
A 8
B 20
C 30
D 15
E 27
0101101110#
(说明:第一个数据5表示共有5个字符要编码,后面的“A 8”表示A的权为8,字符个数不超过20个;数据0101101110#是要解码的数据,最后以#结束)
输出示例
编码为: A 010
B 00
C 11
D 011
E 10
平均编码长度为:2.23
对应的译码为:ACDE
代码
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
#include <iostream>
const int INF=0x3f3f3f3f;
using namespace std;
typedef struct
{
char ch; //字母与编码
int weight; //权重
int parent, lchild, rchild; //父亲与左右孩子
}HTNode, *HuffmanTree;
typedef char **HuffmanCode;
int Floor[25];
//以下为函数原型声明
void CreateHuffmanTree(HuffmanTree &HT, int w[], char ch[], int n);//构造HuffmanTree
void Select(HuffmanTree HT, int n, int &s1, int &s2); //选择两个权重最小的无父亲的结点
void HTCoding(HuffmanTree HT, HuffmanCode &HC, int n); //利用HuffmanTree对字符编码
void PrintCode(HuffmanCode HC, int n, char ch[]);//输出编码
double AverageLenght(HuffmanTree HT, HuffmanCode HC, int n); //求平均编码长度
void DeCode(HuffmanTree HT, int n);//解码
int main()
{
int n;
int i;
char arrch[20];
int arrweight[20];
double avlength;
char ch;
HuffmanTree HT; //HT是一个指针变量,用于指向HuffmanTree
HuffmanCode HC; //HC是一个指针变量,用于存放对应字符的编码
scanf("%d",&n);//输入字符个数
while((ch=getchar())!='\n');
if(n>20||n<2) exit(0); //输入的字符数超出要求范围退出;
for(i=0;i<n;i++) //输入字符和对应的权重
{
scanf("%c",&arrch[i]);
scanf("%d",&arrweight[i]);
while((ch=getchar())!='\n');
}
CreateHuffmanTree(HT,arrweight,arrch,n);//构造HuffmanTree
HTCoding(HT,HC,n);//利用HuffmanTree对字符编码
PrintCode(HC,n,arrch); //输出编码
avlength=AverageLenght(HT,HC,n);//求平均编码长度
printf("平均编码长度为:%.2f\n",avlength);
DeCode(HT,n);//解码
for(i=0;i<n;i++)
free(HC[i]);
free(HC);
free(HT);
}//end_main
void CreateHuffmanTree(HuffmanTree &HT,int w[],char ch[],int n)
{
// w存放n个字符的权值(均>0),构造哈夫曼树HT,
int i, m,s1, s2;
m = 2 * n - 1;
HT = (HuffmanTree)malloc((m+1) * sizeof(HTNode)); // 0号单元不用
//设有一组权值存放于数组w[]中,对应的字符在数组ch[]中
for (i=1; i<=n; i++)
{
HT[i].weight=w[i-1];
HT[i].parent=0;
HT[i].lchild=0;
HT[i].rchild=0;
HT[i].ch =ch[i-1];
}
//数组HT后n-1个元素先清空
for (i=n+1; i<=m; i++)
{
HT[i].weight=0;
HT[i].parent=0;
HT[i].lchild=0;
HT[i].rchild=0;
HT[i].ch='\0';
}
for (i=n+1; i<=m; i++) // 建哈夫曼树
{ Select(HT, i-1, s1, s2);
HT[s1].parent = i; HT[s2].parent = i;
HT[i].lchild = s1; HT[i].rchild = s2;
HT[i].weight = HT[s1].weight + HT[s2].weight;
}
}
void Select(HuffmanTree HT, int n, int &s1, int &s2)
{ //补充完整
int t1=INF;
int t2=INF;
for(int i=1;i<=n;i++)
{
if(HT[i].parent==0)//未被选过
{
if(HT[i].weight<t1)//选为s1
{
s1=i;
t1=HT[s1].weight;
}
}
}
for(int i=1;i<=n;i++)
{
if(HT[i].parent==0&&i!=s1)//未被选过且没被选为s1
{
if(HT[i].weight<t2)//选为s2
{
s2=i;
t2=HT[s2].weight;
}
}
}
}//end_Select
void HTCoding(HuffmanTree HT,HuffmanCode &HC,int n)
{
// 从叶子到根逆向求每个字符的哈夫曼编码
int i,j,k, start;
int f;
int c;
char * cd;
HC=(HuffmanCode)malloc((n)*sizeof(char *));
cd=(char *)malloc(n*sizeof(char)); // 分配求编码的工作空间
cd[n-1]='\0'; // 编码结束符。
for (i=1; i<=n; ++i)
{
Floor[i]=0; // 逐个字符求哈夫曼编码
start = n-1; // 编码结束符位置
for (c=i,f=HT[i].parent; f!=0 ;c=f, f=HT[f].parent)
{
if(HT[f].lchild==c)
{cd[--start] = '0';
//cout<<"0";
}
else
{cd[--start] = '1';
//cout<<"1";
}
Floor[i]++;
}
HC[i-1]=(char *)malloc((n-start)*sizeof(char));
for(j=start,k=0;j<n;j++,k++)// 从cd复制编码(串)到HC
{
HC[i-1][k]=cd[j];
//cout<<cd[j];
}
}
//cout<<HC[4];
free(cd); // 释放工作空间
}//end_HTCoding
void PrintCode(HuffmanCode HC, int n, char ch[]) //输出编码
{ //补充完整
for(int i=0;i<n;i++)
{
//printf("%c %s\n",ch[i-1],&HC[i-1]);
if(i==0)
{
printf("编码为:");
printf("%8c %s\n",ch[i],HC[i]);
}
else
printf("%16c %s\n",ch[i],HC[i]);
}
}//end_PrintCode
double AverageLenght(HuffmanTree HT, HuffmanCode HC, int n)//求平均编码长度
{//补充完整
double sum=0;
for(int i=1;i<=n;i++)
{
sum+=Floor[i]*HT[i].weight/100.0;
//cout<<Floor[i]<<endl;
}
return sum;
}//end_AverageLenght
void DeCode(HuffmanTree HT,int n)//解码
{
int i;
char endflag='#';
char ch;
i=2*n-1; /*从根结点开始往下搜索*/
scanf("%c",&ch); /*读入一个二进制码*/
printf("对应的译码为:");
while (ch!=endflag)
{
if (ch=='0')
i=HT[i].lchild;
else i=HT[i].rchild;
if(HT[i].lchild==0) /*tree[i] 是叶子结点*/
{
printf("%c",HT[i].ch);
i=2*n-1;
}
scanf("%c",&ch);
}
if ((HT[i].lchild!=0) && (i!=2*n-1)) //电文读完但没到叶子结点
printf("\n未能完全解码\n");
printf("\n");
}//end_DeCode
注意
统计层数用了全局变量数组,不是很好,应该以strlen(HC[I])代替。